Справочник врача 21

Поиск по медицинской литературе


Вирус




Вирус гриппа и его помощник Снова пришла зима, и снова пришел грипп. На сей раз не птичий, а для разнообразия свиной. Что это за напасть такая — почему грипп, вроде бы предназначенный для кур или свиней, способен вторгаться в дыхательные пути человека? Что говорит по этому поводу наука? Наука по этому поводу говорит, что вторжение вируса гриппа в наш организм представляет собой совершенно замечательный по изяществу и тонкости процесс своеобразного молекулярного танца, исполняемого, как и положено танцу, двумя партнерами — некой молекулой, находящейся на поверхности клетки, и некой другой молекулой, находящейся на поверхности вируса гриппа. И далее наука говорит, что именно изысканно-согласованные пируэты этих двух молекул как раз и открывают разным вирусам путь в наши дыхательные пути. Присмотримся же и мы к этой «научной картине гриппа» — авось тогда и для нас кое-какие загадки гриппа перестанут быть загадками. Прежде всего — что знает наука об этих танцевальных партнерах? Начнем с вируса. Всякий вирус, говорят ученые, состоит из генетической молекулы и оболочки, в которой эта молекула упакована. У вируса гриппа эта генетическая молекула принадлежит к классу РНК, которая имеет некоторые химические отличия от всем известной ДНК, и, в частности, состоит из одной длинной цепи, а не из двух, как ДНК. Однако у вируса гриппа (как, впрочем, и у многих других вирусов) эта РНК «сегментирована», то есть ее длинная цепь разбита на несколько отдельных кусков. Это позволяет вирусу очень быстро эволюционировать. Действительно, если два разных вида такого вируса встретятся в одном месте, то каждый сможет передать часть сегментов своей РНК другому. Благодаря такой «пересортировке» (или «виральному сексу», как ее иногда называют) потомство этих двух вирусов получит новые гены, а с ними — новые свойства. Но для этого они должны прежде всего произвести такое потомство. А вирус, как известно, — не живое существо: у него нет тех органелл, с помощью которых живет и размножается всякая обычная клетка. Поэтому вирусу для размножения нужно пробраться в обычную клетку — там он сможет воспользоваться всеми ее органеллами. Как же он туда пробирается? С этого вопроса мы начали и к нему вернулись. Как уже сказано выше, ученые обнаружили, что проникнуть в клетку вирусу помогают специальные молекулы, торчащие на его оболочке. Увеличенный под электронным микроскопом, вирус выглядит как шарик, утыканный «гвоздиками» и «грибками». Они торчат в жировой оболочке вируса таким образом, что основная их часть находится снаружи, а «хвосты» входят внутрь оболочки. «Гвоздики» — это молекулы особого сахаро-белка, который называется хем-агглютинин, или сокращенно Н (не русское «эн», а английское «эйч»!). Такое название молекула Н получила за свою способность «агглютинировать», то есть склеивать друг с другом красные кровяные тельца-эритроциты, несущие в себе железистые «хем-группы» гемоглобина. Изучая вирусы гриппа класса А (самого вирулентного из трех классов гриппозных вирусов), исследователи обнаружили (на момент написания этого текста) 16 разных видов молекул Н, в основном — из вирусов диких птиц (например, вид Н16 был открыт в 2006 году на оболочке вируса гриппа диких гусей, обитающих в Швеции и Норвегии). Второй тип молекул, торчащих на оболочке вируса, то, что мы назвали «грибочки», — это нейраминидаза (сокращенно N). Это тоже соединение одного из видов сахара с одним из видов белков: длинная цепочка сахара играет роль ножки, а белковая цепочка свернута в плоскую «шапочку» гриба, над которой поднимаются еще несколько сахарных цепочек. В вирусах разных птиц и животных найдено девять разных видов нейраминидазы, от N1 до N9. Подобно хем-агглютинину нейраминидаза тоже образуется по инструкциям вирусной РНК. В целом эта РНК у вируса гриппа содержит 11 разных генов: один — для Н, один для N, а девять остальных — для девяти видов белков, находящихся вместе с РНК - 40... [стр. 40 ⇒]

В вирусах гриппа А эти 11 генов разбросаны по восьми сегментам. И поскольку эти сегменты в процессе размножения, как мы уже знаем, проходят «пересортировку», то гены разных Н и разных N на оболочке вируса-потомка могут соединяться в самых разных комбинациях. И это крайне важно для существования вирусов. Это крайне важно потому, что в отличие от упомянутых девяти белков, которые помогают вирусу внутри клетки, молекулы Н и N помогают ему снаружи — в тот момент, когда вирусу нужно проникнуть в клетку, и потом, когда его потомкам нужно выйти из нее. А для проникновения в клетку и выхода из нее вирус как раз и пользуется той или иной комбинацией этих двух молекул, как мы — кодом домофона. Например, вирус, преимущественно атакующий клетки свиньи, несет на своей оболочке «код» H1N1, а вирус, особенно охотно вторгающийся в клетки птицы, — H5N1. Поэтому в организме свиньи, заболевшей гриппом, исследователи, как правило, обнаруживают вирус типа H1N1, а в организме курицы — H5N1. И соответственно называют их вирусом «птичьего» или вирусом «свиного» гриппа. Но такая избирательность не абсолютна. Вирусы, несущие на себе другие коды, тоже зачастую могут проникать в эти клетки. И, встречаясь там друг с другом, могут, как описано выше, обмениваться сегментами своих РНК, что приводит к появлению новых видов гриппозных вирусов (это особенно часто происходит в клетках свиней, которые в этом смысле являются своеобразными «плавильными котлами» природы). Справедливо это и для людей: в клетки дыхательного тракта человека могут проникать не только вирусы гриппа, специализирующиеся на ежесезонном вторжении в них, но и такие вирусы, которые несут на себе H-N «коды» птиц или животных. Вот, для иллюстрации, список «кодов», обнаруженных в гриппозных вирусах во время последних эпидемий или вспышек гриппа у людей: H1N1 (знаменитая «испанка» 1918 года — 500 миллионов заболевших, 50 миллионов погибших, а также эпидемия свиного гриппа 2009 года); H2N2 (эпидемия «азиатского» гриппа 1957 года — 1 миллион погибших), H3N2 («гонконгский» грипп 1968 года — 500 тысяч погибших, а также вспышка 2007 года); H5N1 («птичий» грипп 2004 года), а кроме того, H7N7, H1N2, H9N2, H7N2, H7N3 и H10N7. Мы, однако, все еще не ответили на вопрос, что именно делает возможным такое проникновение в наши клетки всех этих «инородных» вирусов. Как показали исследования, всем этим вирусам «открывает дверь» некий единый «тайный помощник». Он находится на поверхности клеток дыхательных путей и является тем вторым партнером упомянутого выше «молекулярного танца», который завершается проникновением вируса в клетку. Но он имеет не одну, а две ипостаси и потому способен помогать разным вирусам, не только «нашим» человеческим, но и «инородным». Помощник этот называется «сиаловая кислота». Последуем за вирусом внутрь нашего дыхательного тракта. Всякий вирус, попадая внутрь организма, «видит» перед собой множество самых разных клеток. В этом «лесу» он должен найти нужные ему «деревья» — те клетки, в которых он способен размножаться (вирусы, как правило, специализируются не только на организмах определенного вида, но и на тканях определенного типа). Это нелегко, потому что каждая из окружающих вирус клеток покрыта, как шубой, густой порослью защитных молекул сахаробелков и сахаро-жиров. Жиры образуют оболочку клетки, белки заякорены в ней, а из тех и других торчат вверх, как ворсинки, длинные цепочки сахарных молекул. Вся эта «шуба» называется «гликокаликс». Она не только защищает клетку — она еще и помогает ей соединяться с соседними клетками, образуя ткань, она позволяет этим клеткам общаться друг с другом, а также с иммунными клетками, и, наконец, она наделяет организм способностью отличать свои клетки от инородных «интервентов» вроде того же вируса — поскольку все клетки одного организма имеют уникальный гликокаликс (только у идентичных близнецов он одинаков), то на этом фоне «чужак» немедленно заметен. Так что наш вирус должен поторопиться и побыстрее проникнуть в какую-нибудь клетку, в противном случае против него будут - 41... [стр. 41 ⇒]

1.1.4. Вирус гепатита А 17.1.2. Реовирусы (семейство Reoviridae) (А.С. Быков) 17.1.2.1. Ротавирусы (род Rotavirus) 17.1.3. Буньянирусы (семейство Bunyaviridae) (Д.Н. Нечаев) 17.1.3.1. Вирус геморрагической лихорадки Крым-Конго (ГЛКК) 17.1.3.2. Вирусы — возбудители хантавирусных инфекций: геморрагической лихорадки с почечным синдромом (ГЛПС) и хантавирусного легочного синдрома 17.1.4. Тогавирусы (семейство Togaviridae) (Д.Н. Нечаев) 17.1.4.1. Вирусы рода Alphavirus 17.1.4.2. Вирус краснухи 17.1.5. Вирусы семейства Flaviviridae (Д.Н. Нечаев) 17.1.5.1. Вирус желтой лихорадки 17.1.5.2. Вирус клещеного энцефалита 17.1.5.3. Вирус лихорадки Западного Нила 17.1.6. Ортомиксовирусы (вирусы гриппа) (В.В. Зверев, Н.В. Хорошко) 17.1.7. Парами ксо в и русы (семейство Paramyxoviridae) (А.С. Быков) 17.1.7.1. Вирусы парагриппа 17.1.7.2. Вирус эпидемического паротита 17.1.7.3. Вирус кори и подострого склерозирующего панэнцефалита 17.1.7.4. Респираторно-синцитиальный вирус человека 17.1.8. Рабдовирусы (Rhabdoviridae) (А.С. Быков) 17.1.8.1. Вирус бешенства 17.1.10. Коронавирусы (семейство Coronaviridae) (В.В. Зверев, Г.Н. Усатова) 17.1.11. Вирус иммунодефицита человека (В.В. Зверев, Л.И. Петрова) 17.1.12. Аренавирусы (семейство Arcnaviridae) (А.С. Быков) 17.1.12.1. Вирусы лимфоцитарного хориоменингита, Ласса, Хунин, Мачупо, Гуанарито, Сабиа 17.1.13. Вирус гепатита Е (В.В. Зверев) 17.2. ДНК-содсржащие вирусы 17.2.1. Аденовирусы (семейство Adenoviridae) (В.В. Зверев, Л.И. Петрова) 17.2.2. Герпесвирусы (семейство Herpesviridae) (В.В. Зверев, А.С. Быков) 17.2.2.1. Вирус простого герпеса 17.2.2.2. Вирус ветряной оспы и опоясывающего герпеса 17.2.2.3. Вирус Эпштейна—Барр 17.2.2.4. Вирус цитомегалии 17.2.2.5. Герпесвирус человека типов 6, 7 и 8 17.2.3. Поксвирусы {семейство Poxviridae) (А.С. Быков) 17.2.3.1. Вирус натуральной оспы 17.2.3.2. Другие поксвирусы, поражающие человека 17.2.4. Гепаднавирусы (семейство Hepadnaviridae) (М.Н. Бойченко) 17.3. Возбудители парентеральных вирусных гепатитов D, С, G (М.Н. Бойченко)... [стр. 5 ⇒]

Клинически ОРЗ характеризуются непродолжительной лихорадкой, слабовыраженной общей интоксикацией и доброкачественным течением. Термин «острые респираторные вирусные инфекции» (ОРВИ) нельзя считать синонимом ОРЗ, так как возбудителями этой обширной группы заболеваний являются не только вирусы, но и бактерии, микоплазмы, хламидии. Ежегодно (по данным ВОЗ) инфекционными болезнями в мире заболевают 40 млн человек, из них 90% приходится на грипп и ОРЗ. Клинические проявления гриппа и ОРЗ, вызванных тем или иным возбудителем, очень сходны, особенно спорадических случаев. В то же время, иммунитет после перенесенных заболеваний является типоспецифическим. Поэтому один и тот же человек может болеть ОРЗ несколько раз в течение года, и каждый раз заболевание вызывается новым этиологическим агентом. Особое значение в этой группе инфекций имеет грипп, ибо даже при оказании своевременной и квалифицированной помощи больным гриппом отмечаются летальные исходы, обусловленные как тяжестью гриппозной инфекции и ее осложнениями, так и обострени ями хронических заболеваний, особенно со стороны сердечно-сосудистой и дыхательной систем. ГРИПП Грипп (Grippus) — острое респираторное заболевание, вызываемое различными типами (А, В, С) вирусов гриппа. Клинически характеризуется острым началом, лихорадкой, выраженной интоксикацией и поражением респираторного тракта. Это наиболее распространенное, высококонтагиозное и тяжелое заболевание из всех ОРЗ. Исторические сведения. Эпидемии гриппа отмечены еще в далеком прошлом. В странах Европы и в России это заболевание было описано под названием «инфлюэнца» (от лат. influere — вторгаться). Позже общепринятым названием болезни стало «грипп» (от фр. gripper — схватывать). Достоверно вирусная природа гриппа установлена в 1933 г. в Англии У. Смитом, К. Эндрю-сом и П. Лейдлоу, выделившими специфический пневмотропный вирус из лег ких хомячков, зараженных смывами из носоглотки больных гриппом. Выделенный вирус был обозначен как вирус гриппа типа А (до 1933 г. возбудителем гриппа считалась гемофильная палочка Афанасьева— Пфейффера). В 1940 г. Т. Френсис и Т. Мэджил открыли вирус гриппа типа В, а в 1947 г. Р. Тейлор выделил еще один новый вариант вируса гриппа — тип С. Этиология. Вирусы гриппа относятся к группе РНК-содержащих ортомик-совирусов с размерами частиц 80-120 нм. В составе вирусов гриппа присутствуют различные антигены. S-антиген, или внутренний нуклеокапсид, типо-специфичен для вирусов А, В и С. Он включает в себя рибонуклеиновую кислоту и вирусный белок, составляя 40% массы вириона. Определяется Sантиген в реакции связывания комплемента (РСК). В наружной оболочке вириона содержится поверхностный V-антиген. В его составе гемагглютинин (Н) и нейраминидаза (N). Гемагглютинин способствует проникновению вируса в цитоплазму эпителиальной клетки. Нейраминидаза способствует выходу вируса из клетки хозяина. Изменение гемагглютинина или нейраминидазы обусловливает появление новых подтипов вируса внутри типа А. Антигенная структура вирусов гриппа типа А претерпела значительные изменения. В 1946—1957 гг. выявлены новые варианты вируса гриппа А — А1 и А2, а выделенные в последующие годы вирусы значительно отличаются по антигенным свойствам от вируса гриппа А2. Новые антигенные варианты вируса типа А вызывают более тяжелые по течению и более массовые по харак теру распространения эпидемии гриппа. Вирусы гриппа типов В и С практически не изменяют своей антигенной структуры. Согласно современной номенклатуре вирусов гриппа типа А, принятой ВОЗ в 1980 году, у вирусов гриппа, выделенных от человека, установлено наличие 3 подтипов антигена Н (Hl H2 H3 ) и 2 подтипов антигена N (N1 и N2 ). В соответствии с данной номенклатурой вирусы гриппа, циркулирующие среди населения до 1957 г., имеют антигенную формулу А (Н^), с 1957 по 1968 г. A(H2 N 2 ), а с 1968 г. — A(H3 N2 ). Современное определение штамма вируса гриппа А включает тип вируса, место выделения, номер штамма, год выделения, формулу гемагглютинина и нейраминидазы. Например: А/Синга-nyp/l/57(H2 N2 ). [стр. 247 ⇒]

Вирусные гепатиты являются одной из сложнейших общемедицинских проблем, поскольку имеют широкое распространение и серьезные исходы. Так, часто после перенесенной острой формы болезни формируется хронический гепатит (особенно при гепатите С), в последующем возможно развитие цирроза печени. Доказана также этиологическая связь между первичной гепатоцеллюлярной карциномой и вирусами гепатитов В и С. Учитывая это, а также значительный рост заболеваемости парентеральными вирусными гепатитами в последние годы в России, проблема вирусных гепатитов выступает на первый план. Гепатит В, одна из форм сывороточного гепатита, приводит к хроническому гепатиту в 5-10% случаев. Это ДНК-содержащий вирус. Инфекция гепатоцита вирусом гепатита В сопровождается продукцией различных вирусных антигенов. Вирус состоит из нуклеокапсида, в котором находится ядерный антиген вируса гепатита В (HBcAg), окруженного белковой оболочкой, содержащей поверхностный антиген вируса гепатита В (HBsAg). Ранее его называли «австралийским антигеном». HBsAg продуцируется всегда в избытке. Его титры в крови наиболее велики при здоровом носительстве, менее велики при хроническом неактивном гепатите и наиболее низки при хроническом активном гепатите, т.е. они не коррелируют с активностью хронического гепатита и формой поражения печени. HBcAg не циркулирует в свободном состоянии, но может присутствовать в клетках печени, где происходит активная репликация вируса (размножение вируса в клетках хозяина). В ходе нее в гладкий эндоплазматический ретикулум попадает синтезируемый крупный белок, который впоследствии выделяется в кровь в виде HBeAg. Обычно его выявляют в сыворотке в период активной репликации вируса. Основные пути передачи гепатита В через кровь, половой, перинатальный. Существуют мутанты вирусного гепатита В - его генетические варианты, отличающиеся по нуклеотидным последовательностям ДНК. У больных, инфицированных мутантным штаммом, наблюдаются более высокие темпы прогресснрования болезни, чаще, чем в случаях заражения «диким» гепатитом В, формируется цирроз печени. Кроме того, эти пациенты хуже поддаются лечению препаратами интерферона. Вирус гепатита D - мелкий сферический агент, состоящий из генома (РНК) и белка, кодирующего синтез специфического д-антигена (HDAg). Уникальность вируса гепатита D (8-частицы) состоит в том, что он дефектен и его репликация зависит от наличия вируса-помощника - вируса гепатита В. Репродукция вируса гепатита D и реализация его патогенных свойств осуществляется лишь в организме, инфицированном вирусом гепатита В. Внешняя оболочка 8-частицы представлена поверхностным антигеном вируса гепатита В - HBsAg. В связи с этим носители HBsAg и больные хроническим гепатитом В имеют повышенный риск инфицирования 5-вирусом. Вирус гепатита D обладает, вероятно, прямым цитопатическим действием. Угроза хронизации возникает приблизительно с такой же частотой, как и при остром гепатите В без 8-агента. Вирус гепатита С принадлежит к семейству Flaviridae. Существует 6 генотипов и более 100 субтипов вируса гепатита С. Геном вируса представлен одноцепочечной линейной РНК, отличительной особенностью его является генетическая неоднородность, обусловленная быстрой замещаемостью нуклеотидов. В результате изменчивости генома внутри одного генотипа образуется большое число мутантных, генетически отличающихся друг от друга вариантов вируса - «квазивидов» вируса гепатита С, которые циркулируют в организме хозяина. С наличием «квазивидов» связывают ускользание вируса от иммунного ответа, длительную персистенцию вируса гепатита С в организме человека и формирование хронического гепатита, а также устойчивость к интерферонотерапии. Из неинфекционных хронических гепатитов следует выделить, прежде всего, аутоиммунный гепатит. Выделяют три его типа, в зависимости от вида аутоантител, обнаруживаемых у больных. Первый тип заболевания характеризуется наличием антинуклеарных аутоантител и/или аутоантител к гладким мышцам, второй тип - аутоантителами к микросомам печени или почек, третий тип аутоантителами к растворимому печеночному антигену и печеночно-панкреатическому антигену. Причины развития хронического аутоиммунного гепатита до конца не выяснены. Примерно в 71% случаев он встречается у молодых женщин. Как правило, эта форма хронического гепатита развивается на фоне других иммунных заболеваний (аутоиммунный тиреоидит, ревматоидный артрит, неспецифический язвенный колит, болезнь Грейвса). В структуре заболеваемости хроническим гепатитом на аутоиммунные формы приходится 20 % случаев. За последнее время вскрыты более детальные механизмы повреждения печени при алкоголизме. В связи с потреблением наркотиков и различных токсических веществ, особенно лицами молодого возраста, возник новый вид патологии - печень наркоманов. Морфологическая картина печени у большинства наркоманов соответствует таковой при хроническом активном гепатите, вызванном не только гепатотоксическим влиянием самого наркотического средства, но во многих случаях вирусом самого 34... [стр. 34 ⇒]

(Беседа учителя с демонстрацией таблиц и модели, анализ рисунка 64 учебника.) Постановка проблемы: «Как вирусы проникают в клетку-хозяина?» (Выдвижение гипотез, их обсуждение.) 2. Проникновение вируса в клетку. Рецепторный эндоцитоз — основной путь проникновения вируса в клетку-хозяина. Этапы проникновения вириона в клетку-хозяина. Значение особого фермента — лизоцима. Выход вирионов из погибшей клетки. Существование вируса в двух формах как индивидуальное развитие вируса в двух стадиях. Выживание вирусов. (Беседа об особенностях жизнедеятельности вируса; раскрытие механизмов проникновения вирусов в клетки с использованием таблиц, моделей и рисунка 66 учебника.) Постановка проблемы: «Каким путём в процессе эволюции могли появиться вирусы?» (Выдвижение гипотез, их обсуждение.) 3. Происхождение вирусов. Многообразие гипотез о происхождении вирусов. Вирусы — результат деградации клеточных организмов. Направления эволюции генетического материала. Гипотеза «взбесившихся генов». (Проблемное изложение учителя с анализом содержания основных гипотез происхождения вирусов и рисунка 67 учебника.) III. Закрепление знаний о строении вирусов, о простых и сложных вирусах, о механизме проникновения вирусов в клетку, о приспособлениях вирусов для проникновения в клетку, об особенностях внутриклеточных паразитов, о гипотезах происхождения вирусов. (Выполнение заданий 1—4 в рабочей тетради, обобщающая беседа.) Вопросы для контроля: 1. Какое строение характерно для вирусов? 2. Какие различия в строении имеют простые и сложные вирусы? 3. Каким образом вирусы проникают в клетку? 4. Охарактеризуйте этапы проникновения вирусов в клетку. 5. Что происходит с вирусом в клетке? 6. Охарактеризуйте основные гипотезы происхождения вирусов. Какая из гипотез вам кажется наиболее вероятной? IV. Домашнее задание: изучить текст § 34 учебника и выполнить задания в конце параграфа. Выполнить задания 5—8 в рабочей тетради. 129... [стр. 130 ⇒]

3.3. Этапы развития вирусологии История достижений вирусологии напрямую связана с успехами развития методической базы исследований. Конец XIX – начало XX в. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры (свечи Шамберлана), которые использовались как средство разделения возбудителей на бактерии и небактерии. С использованием фильтруемости через бактериологические фильтры были открыты следующие вирусы: 1892 г. – вирус табачной мозаики; 1898 г. – вирус ящура; 1899 г. – вирус чумы рогатого скота; 1900 г. – вирус желтой лихорадки; 1902 г. – вирус оспы птиц и овец; 1903 г. – вирус бешенства и вирус чумы свиней; 1904 г. – вирус оспы человека; 1905 г. – вирус чумы собак и вирус вакцины; 1907 г. – вирус денге; 1908 г. – вирус оспы и трахомы; 1909 г. – вирус полиомиелита; 1911 г. – вирус саркомы Рауса; 1915 г. – бактериофаги; 1916 г. – вирус кори; 1917 г. – вирус герпеса; 1926 г. – вирус везикулярного стоматита. 30-е годы – основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные (белые мыши – для вирусов гриппа, новорожденные мыши – для вирусов Коксаки, шимпанзе – для вируса гепатита B, куры, голуби – для онкогенных вирусов, поросята-гнотобионты – для кишечных вирусов и т. д.). Первым, кто начал систематически использовать лабораторных животных при изучении вирусов, был Пастер, который еще в 1881 г. проводил исследования по инокуляции материала от больных бешенством в мозг кролика. Другая веха – работы по изучению желтой лихорадки, следствием которых явилось использование в вирусологической практике новорожденных мышей. Кульминацией этого цикла работ стало выделение Сайклзом в 1948 г. на мышах-сосунках группы вирусов эпидемической миалгии. 1931 г. – в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза, саркомы кур и некоторым другим вирусам. И в настоящее время куриные эмбрионы широко используются для выделения вирусов гриппа. 1932 г. – английский химик Элфорд создает искусственные мелкопористые коллоидные мембраны – основу для метода ультрафильтрации, с помощью которого стало возможным проводить определение размера вирусных частиц и дифференцировать вирусы по этому признаку. 1935 г. – применение метода центрифугирования дало возможность кристаллизации вируса табачной мозаики. В настоящее время методы центрифугирования и ультрацентрифугирования (ускорение на дне пробирки превышает 200 000 g) широко используются для выделения и очистки вирусов. В 1939 г. для изучения вирусов впервые был применен электронный микроскоп, обладающий разрешающей способностью 0,2–0,3 нм. Использование ультратонких срезов тканей и метода негативного контрастирования  История и методология биологии и биофизики. Учеб. пособие... [стр. 470 ⇒]

Присутствие специфических белков в капсидах некоторых вирусов позволяет им противостоять воздействию протеолитического переваривания в кишечнике. Проникновение некоторых энтеровирусов через слизистый барьер кишечника осуществляется с участием специфической популяции клеток, покрывающих пейеровы бляшки, известных как микроскладчатые (М) клетки. Эти клетки и, возможно, их аналоги в бронхиальной лимфоидной ткани, видимо, облегчают транспорт некоторых вирусов, включая реовирусы и энтеровирусы, в околопросветное пространство тонкого кишечника. Половой путь передачи, подразумевающий проникновение вирусов через слизистую оболочку мочеполовых путей и прямой кишки, может иметь важное значение для вируса простого герпеса типа 2, ЦМВ, вируса гепатита В и, вероятно, вируса ВТЛЧ или HI/LAV. У некоторых вирусов процессы внедрения, первичной репликации и избирательною накопления в какой-либо ткани могут протекать в одной и той же анатомической области. Примерами вирусных болезней этого типа могут быть инфекции верхних и нижних дыхательных путей, вызванные риновирусами, орто- и парамиксовирусами; энтерит, вызванный ротавирусами; поражения кожи, вызванные папилломавирусами (бородавки) и вирусами паравакцины (узелки доильщицы). В других случаях развитие заболевания происходит после распространения вируса дистальнее места его проникновения в организм, например в центральную нервную систему. Входными воротами для энтеровирусов служит желудочно-кишечный тракт, а затем, попав в центральную нервную систему, они вызывают менингит, энцефалит и полиомиелит. Входными воротами для вирусов кори и ветряной оспы служат дыхательные пути, а затем, распространяясь по организму, они приводят к поражению кожи (экзантемы) или к генерализованному вовлечению в патологический процесс внутренних органов. Для того чтобы попасть в ткани-мишени, вирусы используют нервные, гематогенные и лимфатические пути переноса. По нервам распространяются вирусы бешенства, простого герпеса, Herpesvirus simiae (обезьяний вирус В), ветряной оспы, опоясывающего герпеса и микроорганизмы, вызывающие зуд. Складывается впечатление, что вирус простого герпеса проникает в нерв через рецептор, локализующийся прежде всего около синаптического окончания, а не в области тела нервной клетки. Вирусы бешенства накапливаются на моторном конце пластинки нервно-мышечного соединения и могут использовать ацетилхолиновые рецепторы или структуры, прилежащие к ним, для проникновения в дистальные аксоны двигательных нейронов. Другие вирусы, включая вирус Ла-Кросс семейства буньявирусов и вирус Синдбис семейства тогавирусов, также концентрируются в области нервно-мышечного соединения, несмотря на то что их рецепторные молекулы не были идентифицированы. Вирус бешенства, кроме того, поражает мышечные веретена и распространяется по чувствительным нервам до ганглиев заднего корешка и спинного мозга. Скорость продвижения по нервам вирусов бешенства, простого герпеса и полиомиелита заставляет предположить, что эти агенты используют внутринейрональные механизмы, включая быстрый аксональный транспорт. Вызывающие зуд агенты, которые медленно распространяются вдоль нервных путей, могут представлять собой пример движения с использованием медленного аксонального транспорта. Инфекционное поражение леммоцитов (шванновские клетки) может представлять собой другой путь перемещения по центральной нервной системе. Распространение инфекции по нервным путям может играть роль не только при движении к центральной нервной системе, но и при распространении в ее пределах, а также и при движении к периферии. Обонятельные пути представляют собой особую категорию нервных путей, участвующих в распространении вирусов. Нейросенсорные обонятельные клетки образуют синапсы непосредственно с митральными клетками обонятельных луковиц в центральной нервной системе. В экспериментальных условиях интраназальная или аэрозольная инокуляция вирусов бешенства, простого герпеса, полиовируса и некоторых тогавирусов может привести к инфекционному поражению центральной нервной системы в результате проникновения их через обонятельные пути. Этот путь проникновения инфекции возможен и в естественных условиях, объясняя попадание вируса бешенства, а возможно и других вирусов, в центральную нервную систему человека. Однако непременным условием является контакт с аэрозолем, в котором вирусы находятся в высоком титре, как, например, в пещерах, населенных множеством инфицированных вирусом бешенства летучих мышей, или в лабораториях с большим числом искусственно зараженных экспериментальных животных. Обонятельный путь проникновения может... [стр. 1200 ⇒]

Препараты могут храниться в обычном холодильнике при температуре 4°С не более 48 ч. Более длительное хранение должно осуществляться при температуре — 70°С. При многократном замораживании и оттаивании многие вирусы быстро теряют инфекционную активность. Выделение вируса из клинического препарата осуществляется путем посева материала на культуру тканей, куриные эмбрионы или инокуляции новорожденным мышам. Метод культуры тканей подразумевает использование первичных клеточных культур, изготовленных из органов животных (например, клетки почек обезьяны); линии диплоидных клеток человека, таких как фибробласты эмбриона Wi-38 и перевиваемые клеточные линии типа HeLa, HEp-2, BHK-21 и Vero. Некоторые вирусы лучше растут на одних клеточных линиях, другие — на других. Вирус гриппа следует выделять путем инокуляции вируссодержащего материала в амниотическую или аллантоисную полость куриного эмбриона. Интраперитонеальная и интрацеребральная инокуляция новорожденным мышам рекомендуется для выделения вируса Коксаки А, а также многих арбовирусов, вируса бешенства, аренавирусов и орбивирусов. Для выделения вируса ЛСМ могут быть использованы взрослые мыши или морские свинки. Идентификация агента, ответственного за возникновение медленной вирусной инфекции, например куру и болезнь Крейтцфельда—Якоба, может потребовать внутричерепной инокуляции материала высшим приматам, например шимпанзе. Специальные методы изоляции вируса с использованием искусственной среды ткани мозга необходимы для идентификации вируса кори в случае ПСПЭ или вируса краснухи у больных с прогрессирующим краснушечным панэнцефалитом. После заражения вируссодержащим материалом клеточной культуры последнюю исследуют на наличие отличительных признаков цитопатического действия ЩПД). Такие вирусы, как НСВ и многие энтеровирусы, оказывают раннее ЦПД, в то время как для выявления ЦПД, вызванного ЦМВ, вирусом краснухи и некоторыми аденовирусами, требуется наблюдать за клеточными культурами в течение недель и даже выращивать субкультуры. В культивируемых клетках ищут признаки их лизиса и вакуолизации. Присутствие синцития свидетельствует о возможном наличии НСВ, PC-вируса, вируса кори или эпидемического паротита. Окрашивание клеточных культур по Гимзе или с использованием других красителей облегчает поиск и обнаружение различных внутриклеточных включений. Иммуноцитохимическое окрашивание клеточных культур для выявления вирусных антигенов с использованием флюоресцеина или специфических антивирусных антител, связанных с ферментом, способствует обнаружению и идентификации многих вирусов, оказывающих минимальный ЦПЭ. Орто- и парамиксовирусы (вирусы гриппа, парагриппа, кори, эпидемического паротита) могут быть обнаружены по способности инфицированных культур тканей адсорбировать эритроциты (гемадсорбция). Вирус краснухи выявляют по способности инфицированных культур блокировать ЦПЭ, вызванный другим вирусом (интерференция). Идентификация вирусных частиц или антигенов в тканевых препаратах представляет собой другой важный метод диагностики вирусной инфекции. Окрашивание соскоба кожи, взятого из основания пузырька, по методу Tzanck с применением красителя Райта или Гимзы помогает идентифицировать вирус простого герпеса или вирус ветряной оспы. Аналогичные методики позволяют идентифицировать клетки, инфицированные ЦМВ в осадке мочи, или клетки, инфицированные вирусом кори, в соскобах, взятых из пятен Коплика. В некоторых случаях важную диагностическую информацию можно получить при электронно-микроскопическом исследовании специально подготовленных препаратов. Концентрация вирусных частиц в таких препаратах должна быть более 1067 частиц в 1 мл. Применение специального метода концентрации вируса в препарате путем адсорбции избытка жидкости и солей на поверхности агарозы позволяет обнаружить вирус при его концентрации всего 104 частиц в 1 мл (метод псевдорепликации). С помощью электронной микроскопии можно без труда отличить вирус оспы коров от вируса ветряной оспы в везикулярной жидкости, отрицательно окрашиваемой фосфотунгусной кислотой. Кроме того, электронная микроскопия может быть чрезвычайно полезна при идентификации таких кожных вирусов, как вирус папилломы человека, вирус контагиозного пустулезного дерматита и контагиозного моллюска. Использование специфической антисыворотки для агрегации вируса в препарате фекалий облегчает электронно-микроскопическое выявление ротавирусов, вируса гепатита А и вируса Норфолк. Электронно-микроскопические исследования препаратов биопсии мозга могут позволить идентифицировать энцефалит, вызванный вирусом простого герпеса, ПМЛ и ПСПЭ. [стр. 1206 ⇒]

Реснитчатые эпителиальные клетки дыхательных путей постоянно эвакуируют слизь из нижних отделов дыхательных путей. В желудке инактивируются такие чувствительные к кислоте вирусы, как риновирусы. Желчные соли, находящиеся в просвете тонкого кишечника, могут разрушить липидную оболочку многих вирусов. Этот факт частично объясняет проникновение по желудочно-кишечному тракту исключительно вирусов, не покрытых оболочкой. Антивирусная защитная функция желудочно-кишечного тракта организма обусловлена наличием протеолитических ферментов и секреторных антител IgA. Присутствие специфических белков в капсидах некоторых вирусов позволяет им противостоять воздействию протеолитического переваривания в кишечнике. Проникновение некоторых энтеровирусов через слизистый барьер кишечника осуществляется с участием специфической популяции клеток, покрывающих пейеровы бляшки, известных как микроскладчатые (М) клетки. Эти клетки и, возможно, их аналоги в бронхиальной лимфоидной ткани, видимо, облегчают транспорт некоторых вирусов, включая реовирусы и энтеровирусы, в околопросветное пространство тонкого кишечника. Половой путь передачи, подразумевающий проникновение вирусов через слизистую оболочку мочеполовых путей и прямой кишки, может иметь важное значение для вируса простого герпеса типа 2, ЦМВ, вируса гепатита В и, вероятно, вируса ВТЛЧ или HI/LAV. У некоторых вирусов процессы внедрения, первичной репликации и избирательною накопления в какой-либо ткани могут протекать в одной и той же анатомической области. Примерами вирусных болезней этого типа могут быть инфекции верхних и нижних дыхательных путей, вызванные риновирусами, орто- и парамиксовирусами; энтерит, вызванный ротавирусами; поражения кожи, вызванные папилломавирусами (бородавки) и вирусами паравакцины (узелки доильщицы). В других случаях развитие заболевания происходит после распространения вируса дистальнее места его проникновения в организм, например в центральную нервную систему. Входными воротами для энтеровирусов служит желудочно-кишечный тракт, а затем, попав в центральную нервную систему, они вызывают менингит, энцефалит и полиомиелит. Входными воротами для вирусов кори и ветряной оспы служат дыхательные пути, а затем, распространяясь по организму, они приводят к поражению кожи (экзантемы) или к генерализованному вовлечению в патологический процесс внутренних органов. Для того чтобы попасть в ткани-мишени, вирусы используют нервные, гематогенные и лимфатические пути переноса. По нервам распространяются вирусы бешенства, простого герпеса, Herpesvirus simiae (обезьяний вирус В), ветряной оспы, опоясывающего герпеса и микроорганизмы, вызывающие зуд. Складывается впечатление, что вирус простого герпеса проникает в нерв через рецептор, локализующийся прежде всего около синаптического окончания, а не в области тела нервной клетки. Вирусы бешенства накапливаются на моторном конце пластинки нервно-мышечного соединения и могут использовать ацетилхолиновые рецепторы или структуры, прилежащие к ним, для проникновения в дистальные аксоны двигательных нейронов. Другие вирусы, включая вирус Ла-Кросс семейства буньявирусов и вирус Синдбис семейства тогавирусов, также концентрируются в области нервно-мышечного соединения, несмотря на то что их рецепторные молекулы не были идентифицированы. Вирус бешенства, кроме того, поражает мышечные веретена и распространяется по чувствительным нервам до ганглиев заднего корешка и спинного мозга. Скорость продвижения по нервам вирусов бешенства, простого герпеса и полиомиелита заставляет предположить, что эти агенты используют внутринейрональные механизмы, включая быстрый аксональный транспорт. Вызывающие зуд агенты, которые медленно распространяются вдоль нервных путей, могут представлять собой пример движения с использованием медленного аксонального транспорта. Инфекционное поражение леммоцитов (шванновские клетки) может представлять собой другой путь перемещения по центральной нервной системе. Распространение инфекции по нервным путям может играть роль не только при движении к центральной нервной системе, но и при распространении в ее пределах, а также и при движении к периферии. Обонятельные пути представляют собой особую категорию нервных путей, участвующих в распространении вирусов. Нейросенсорные обонятельные клетки образуют синапсы непосредственно с митральными клетками обонятельных луковиц в центральной нервной системе. В экспериментальных условиях интраназальная или аэрозольная инокуляция вирусов бешенства, простого герпеса, полиовируса и... [стр. 1219 ⇒]

Этот путь проникновения инфекции возможен и в естественных условиях, объясняя попадание вируса бешенства, а возможно и других вирусов, в центральную нервную систему человека. Однако непременным условием является контакт с аэрозолем, в котором вирусы находятся в высоком титре, как, например, в пещерах, населенных множеством инфицированных вирусом бешенства летучих мышей, или в лабораториях с большим числом искусственно зараженных экспериментальных животных. Обонятельный путь проникновения может объяснить локализацию вируса простого герпеса в области орбито-фронтальной и срединно-височной коры у больных с энцефалитами этой этиологии. Гематогенный путь распространения имеет важное значение для многих вирусов. Период первичной репликации обычно предшествует началу виремии и может протекать бессимптомно или сопровождаться продромальными явлениями. Первичная репликация энтеровирусов протекает в пейеровых бляшках и перитонзиллярной лимфатической ткани. Первичная репликация респираторных вирусов происходит в эпителиальных или альвеолярных клетках, а многих энтеровирусов и тогавирусов — в скелетных мышцах. В некоторых случаях вирус должен преодолеть определенное расстояние от места первичной мультипликации (умножения) до попадания в кровеносное русло: по лимфатическим сосудам он сначала проникает в регионарные лимфатические узлы. Начальная (первичная) вирусемия часто приводит к рассеиванию вирусов по таким тканям, как селезенка и печень, где продолжается увеличение их числа в паренхиматозных клетках, что приводит к усиленной вторичной вирусемии. Продолжающийся рост в эндотелиальных клетках увеличивает продолжительность вирусемической стадии при некоторых тогавирусных инфекциях. Длительная вторичная усиленная вирусемия необходима, если вирус должен преодолеть очистительный механизм ретикулоэндотелиальных клеток. Вирусы, переносимые кровью, могут находиться в свободном состоянии или в сопровождении клеточных элементов. Свободно в плазме перемещаются вирус гепатита В, пикорнавирусы и тогавирусы. Вирус колорадской клещевой лихорадки и вирус Рифт-Валли соединяются с эритроцитами. Вирус Эпстайна— Барра (ВЭБ), ЦМВ, вирус краснухи и ВТЛЧ или III/LAV перемещаются в комплексе с лимфоцитами. В некоторых случаях вирусы распространяются различными путями на разных стадиях своего инфекционного цикла. Вирус ветряной оспы рассеивается по коже гематогенным путем, вызывая появление ветряночных элементов. Затем вирус движется афферентно вдоль нервных волокон от кожи до нейронов ганглия заднего корешка, где и сохраняется в латентной форме. Реактивация вируса сопровождается его эфферентным движением по чувствительным нервным волокнам до соответствующих кожных дерматом с образованием опоясывающего поражения. Распространение вируса по нервным путям связывают прежде всего с повторными эпизодами оральной и генитальной инфекции, вызванной вирусом простого герпеса. Полиовирус представляет собой пример вируса, способного распространяться как гематогенным, так и нейрогенным путями. Гематогенный путь рассматривается обычно как основной путь попадания вируса в центральную нервную систему, хотя не исключен и путь по вегетативным нервам кишечника. Определенную роль в перемещении полиовируса по центральной нервной системе может играть аксональный транспорт. После того как вирус попал из места своей первичной репликации в органмишень, он должен инфицировать популяцию чувствительных клеток. Для этого необходимо, чтобы специфические вирусные структуры (вирусные белки присоединения) и вирусные рецепторы на клетках пришли во взаимодействие. Точная природа некоторых из этих вирусных рецепторов постепенно становится известной. Вирусзакодированные ткани — специфические усилители могут в определенной степени опосредовать вирусное повреждение специфической клеточной популяции. Для развития литической инфекции необходимо, чтобы все последовательные этапы вирусного репликационного цикла были успешно осуществлены. Защитные факторы организма. Образование антител. Большинство вирусов является хорошими антителами, способными стимулировать иммунный ответ, поскольку они содержат большое количество инородных для организма хозяина белков, каждый из которых имеет множество антигенных участков. Кроме того, несмотря на то что количество вирусного антигенного материала первоначально может быть довольно незначительно, по мере репликации вируса оно постоянно увеличивается. Лишь незначительная часть антител играет существенную роль в защите организма хозяина... [стр. 1220 ⇒]

Можно выделить 3 класса генов ВПГ. Гены первого класса (альфа-) ранее других проявляются при начале инфекционного процесса, не требуя предварительного синтеза вирусного белка. Для генов ВПГ второго класса (бета-) необходим предварительный синтез альфа-протеина, но необязательна репликация вирусной ДНК. бета-Протеины включают регуляторные белки и ферменты, участвующие в репликации ДНК. Большинство современных противовирусных препаратов нарушают функцию бетапротеинов аналогично действию вирусной ДНК-полимеразы. Для проявления активности генов ВПГ третьего класса (гамма) предварительно должна произойти репликация вирусной ДНК. Большинство структурных протеинов, специфических для вируса, представляют собой гамма-протеины. После репликации вирусного генома и синтеза структурных белков в ядре клетки происходит сборка нуклеокапсидов. По мере проникновения нуклеокапсидов из ядра через внутреннюю ядерную мембрану в перинуклеарное пространство они покрываются оболочкой. В некоторых клетках при репликации вируса в ядре формируются тельца-включения двух типов: базофильные тельца типа А, Фельгенположительные, содержат вирусную ДНК; и эозинофильное тельце-включение, свободное от вирусной нуклеиновой кислоты или белка, представляющее собой «шрам» вирусной инфекции. Затем вирионы транспортируются по эндоплазматической сети и пластинчатому комплексу к клеточной поверхности, Проникновение ВПГ в некоторые клетки (в частности, нейроны) не сопровождается репликацией вируса и гибелью клетки. Напротив, клетка оказывает на вирусные геномы угнетающее влияние, приводя их в состояние, при котором существование вируса совместимо с нормальной активностью клетки. Этот процесс получил название латентность, или скрытое существование. Через какое-то время может произойти активация вирусного генома с последующей репликацией вируса, а в некоторых случаях и вновь появиться герпетические высыпания. Этот процесс называется реактивацией. Несмотря на то что вирус редко удается выделить из чувствительных и вегетативных нервных ганглиев, взятых у трупов, попытки культивировать нервные клетки in vitro позволяют получить активные вирионы (метод, названный эксплантацией). Вирус же вновь внедряется в восприимчивые клетки — процесс кокультивирования. Впервые репликация вирусов в нейронах была обнаружена при реактивации in vitro. Это позволяет предположить, что нейрон служит своеобразным депо латентно существующего вируса и в организме. Затем вирусную ДНК обнаружили в нервной ткани в тот момент, когда активный вирус не мог быть выделен оттуда. ДНК ВПГ, экстрагированная из нервной ткани, служащей депо латентно существующего вируса, отличается от ДНК ВПГ, полученной из клеток, где происходит активная репликация вирусов. Современные данные свидетельствуют о том, что ДНК ВПГ в клетках, где инфекция протекает латентно, может существовать в циркулярной, или сцепленной, форме. Патогенез. Вирус проникает в организм через слизистые оболочки или участки поврежденной кожи. Репликация вируса начинается в клетках эпидермиса и собственно кожи. Независимо от наличия клинических признаков заболевания, репликация вируса происходит в объеме, достаточном для того, чтобы вирус мог внедриться в чувствительные или вегенативные нервные окончания. Однако всегда ли внедрение вируса в периферические ткани приводит к развитию латентной инфекции, неясно. Считается., что вирус, а скорее всего нуклеокапсид, транспортируется по аксону к телу нервной клетки в ганглии. Время, необходимое для распространения вируса от периферических тканей после его инокуляции до нервных узлов у человека, неизвестно. Во время первой фазы инфекционного процесса репликация вирусов происходит в ганглии и в окружающих его тканях. Затем по эфферентным путям, представленным периферическими чувствительными нервными окончаниями, активный вирус мигрирует, приводя к диссеминированной кожной инфекции. Эфферентное распространение вирусов к коже по периферическим чувствительным нервам позволяет объяснить факт обширного вовлечения новых поверхностей и высокую частоту новых высыпаний, находящихся на значительном удалении от участка первичной локализации везикул. Это явление характерно для лиц с первичным генитальным или орально-лабиальным герпесом. У подобных больных вирус можно выделить из нервной ткани, находящейся далеко от нейронов, иннервирующих место инокуляции. Внедрение вируса в окружающие ткани делает возможным распространение инфекции по слизистым оболочкам. [стр. 1279 ⇒]

Гематогенный путь распространения имеет важное значение для многих вирусов. Период первичной репликации обычно предшествует началу виремии и может протекать бессимптомно или сопровождаться продромальными явлениями. Первичная репликация энтеровирусов протекает в пейеровых бляшках и перитонзиллярной лимфатической ткани. Первичная репликация респираторных вирусов происходит в эпителиальных или альвеолярных клетках, а многих энтеровирусов и тогавирусов — в скелетных мышцах. В некоторых случаях вирус должен преодолеть определенное расстояние от места первичной мультипликации (умножения) до попадания в кровеносное русло: по лимфатическим сосудам он сначала проникает в регионарные лимфатические узлы. Начальная (первичная) вирусемия часто приводит к рассеиванию вирусов по таким тканям, как селезенка и печень, где продолжается увеличение их числа в паренхиматозных клетках, что приводит к усиленной вторичной вирусемии. Продолжающийся рост в эндотелиальных клетках увеличивает продолжительность вирусемической стадии при некоторых тогавирусных инфекциях. Длительная вторичная усиленная вирусемия необходима, если вирус должен преодолеть очистительный механизм ретикулоэндотелиальных клеток. Вирусы, переносимые кровью, могут находиться в свободном состоянии или в сопровождении клеточных элементов. Свободно в плазме перемещаются вирус гепатита В, пикорнавирусы и тогавирусы. Вирус колорадской клещевой лихорадки и вирус Рифт-Валли соединяются с эритроцитами. Вирус Эпстайна— Барра (ВЭБ), ЦМВ, вирус краснухи и ВТЛЧ или III/LAV перемещаются в комплексе с лимфоцитами. В некоторых случаях вирусы распространяются различными путями на разных стадиях своего инфекционного цикла. Вирус ветряной оспы рассеивается по коже гематогенным путем, вызывая появление ветряночных элементов. Затем вирус движется афферентно вдоль нервных волокон от кожи до нейронов ганглия заднего корешка, где и сохраняется в латентной форме. Реактивация вируса сопровождается его эфферентным движением по чувствительным нервным волокнам до соответствующих кожных дерматом с образованием опоясывающего поражения. Распространение вируса по нервным путям связывают прежде всего с повторными эпизодами оральной и генитальной инфекции, вызванной вирусом простого герпеса. Полиовирус представляет собой пример вируса, способного распространяться как гематогенным, так и нейрогенным путями. Гематогенный путь рассматривается обычно как основной путь попадания вируса в центральную нервную систему, хотя не исключен и путь по вегетативным нервам кишечника. Определенную роль в перемещении полиовируса по центральной нервной системе может играть аксональный транспорт. После того как вирус попал из места своей первичной репликации в органмишень, он должен инфицировать популяцию чувствительных клеток. Для этого необходимо, чтобы специфические вирусные структуры (вирусные белки присоединения) и вирусные рецепторы на клетках пришли во взаимодействие. Точная природа некоторых из этих вирусных рецепторов постепенно становится известной. Вирусзакодированные ткани — специфические усилители могут в определенной степени опосредовать вирусное повреждение специфической клеточной популяции. Для развития литической инфекции необходимо, чтобы все последовательные этапы вирусного репликационного цикла были успешно осуществлены. Защитные факторы организма. Образование антител. Большинство вирусов является хорошими антителами, способными стимулировать иммунный ответ, поскольку они содержат большое количество инородных для организма хозяина белков, каждый из которых имеет множество антигенных участков. Кроме того, несмотря на то что количество вирусного антигенного материала первоначально может быть довольно незначительно, по мере репликации вируса оно постоянно увеличивается. Лишь незначительная часть антител играет существенную роль в защите организма хозяина от инфекции, а в некоторых случаях сами антитела могут участвовать в патогенезе заболевания. Иммуногенность вирусов зависит от их природы и от различных факторов организма. Медленные вирусы, вызывающие куру и болезнь Крейтцфельда— Якоба, видимо, не провоцируют в организме хозяина какого-либо заметного иммунного ответа. Путь введения вируса также может играть роль в развитии иммунного ответа. При экспериментальном развитии гриппозной инфекции было показано, что внутривенная инокуляция вируса обладает большей иммуногенностью, чем внутрибрюшинная, которая в свою очередь превышает выраженность иммунного ответа при подкожном введении вируса. [стр. 1201 ⇒]

При многократном замораживании и оттаивании многие вирусы быстро теряют инфекционную активность. Выделение вируса из клинического препарата осуществляется путем посева материала на культуру тканей, куриные эмбрионы или инокуляции новорожденным мышам. Метод культуры тканей подразумевает использование первичных клеточных культур, изготовленных из органов животных (например, клетки почек обезьяны); линии диплоидных клеток человека, таких как фибробласты эмбриона Wi-38 и перевиваемые клеточные линии типа HeLa, HEp-2, BHK-21 и Vero. Некоторые вирусы лучше растут на одних клеточных линиях, другие — на других. Вирус гриппа следует выделять путем инокуляции вируссодержащего материала в амниотическую или аллантоисную полость куриного эмбриона. Интраперитонеальная и интрацеребральная инокуляция новорожденным мышам рекомендуется для выделения вируса Коксаки А, а также многих арбовирусов, вируса бешенства, аренавирусов и орбивирусов. Для выделения вируса ЛСМ могут быть использованы взрослые мыши или морские свинки. Идентификация агента, ответственного за возникновение медленной вирусной инфекции, например куру и болезнь Крейтцфельда—Якоба, может потребовать внутричерепной инокуляции материала высшим приматам, например шимпанзе. Специальные методы изоляции вируса с использованием искусственной среды ткани мозга необходимы для идентификации вируса кори в случае ПСПЭ или вируса краснухи у больных с прогрессирующим краснушечным панэнцефалитом. После заражения вируссодержащим материалом клеточной культуры последнюю исследуют на наличие отличительных признаков цитопатического действия ЩПД). Такие вирусы, как НСВ и многие энтеровирусы, оказывают раннее ЦПД, в то время как для выявления ЦПД, вызванного ЦМВ, вирусом краснухи и некоторыми аденовирусами, требуется наблюдать за клеточными культурами в течение недель и даже выращивать субкультуры. В культивируемых клетках ищут признаки их лизиса и вакуолизации. Присутствие синцития свидетельствует о возможном наличии НСВ, PC-вируса, вируса кори или эпидемического паротита. Окрашивание клеточных культур по Гимзе или с использованием других красителей облегчает поиск и обнаружение различных внутриклеточных включений. Иммуноцитохимическое окрашивание клеточных культур для выявления вирусных антигенов с использованием флюоресцеина или специфических антивирусных антител, связанных с ферментом, способствует обнаружению и идентификации многих вирусов, оказывающих минимальный ЦПЭ. Орто- и парамиксовирусы (вирусы гриппа, парагриппа, кори, эпидемического паротита) могут быть обнаружены по способности инфицированных культур тканей адсорбировать эритроциты (гемадсорбция). Вирус краснухи выявляют по способности инфицированных культур блокировать ЦПЭ, вызванный другим вирусом (интерференция). Идентификация вирусных частиц или антигенов в тканевых препаратах представляет собой другой важный метод диагностики вирусной инфекции. Окрашивание соскоба кожи, взятого из основания пузырька, по методу Tzanck с применением красителя Райта или Гимзы помогает идентифицировать вирус простого герпеса или вирус ветряной оспы. Аналогичные методики позволяют идентифицировать клетки, инфицированные ЦМВ в осадке мочи, или клетки, инфицированные вирусом кори, в соскобах, взятых из пятен Коплика. В некоторых случаях важную диагностическую информацию можно получить при электронно-микроскопическом исследовании специально подготовленных препаратов. Концентрация вирусных частиц в таких препаратах должна быть более 1067 частиц в 1 мл. Применение специального метода концентрации вируса в препарате путем адсорбции избытка жидкости и солей на поверхности агарозы позволяет обнаружить вирус при его концентрации всего 104 частиц в 1 мл (метод псевдорепликации). С помощью электронной микроскопии можно без труда отличить вирус оспы коров от вируса ветряной оспы в везикулярной жидкости, отрицательно окрашиваемой фосфотунгусной кислотой. Кроме того, электронная микроскопия может быть чрезвычайно полезна при идентификации таких кожных вирусов, как вирус папилломы человека, вирус контагиозного пустулезного дерматита и контагиозного моллюска. Использование специфической антисыворотки для агрегации вируса в препарате фекалий облегчает электронно-микроскопическое выявление ротавирусов, вируса гепатита А и вируса Норфолк. Электронно-микроскопические исследования препаратов биопсии мозга могут позволить идентифицировать энцефалит, вызванный вирусом простого герпеса, ПМЛ и ПСПЭ. Обнаружение вирусспецифических антигенов облегчается при использовании методов иммунофлюоресценции и иммуноцитохимии. Ценность этих методов особенно высока при диагностике бешенства, герпетической инфекции, ПМЛ и ПСПЭ в препаратах... [стр. 1206 ⇒]

Этот процесс получил название латентность, или скрытое существование. Через какое-то время может произойти активация вирусного генома с последующей репликацией вируса, а в некоторых случаях и вновь появиться герпетические высыпания. Этот процесс называется реактивацией. Несмотря на то что вирус редко удается выделить из чувствительных и вегетативных нервных ганглиев, взятых у трупов, попытки культивировать нервные клетки in vitro позволяют получить активные вирионы (метод, названный эксплантацией). Вирус же вновь внедряется в восприимчивые клетки — процесс кокультивирования. Впервые репликация вирусов в нейронах была обнаружена при реактивации in vitro. Это позволяет предположить, что нейрон служит своеобразным депо латентно существующего вируса и в организме. Затем вирусную ДНК обнаружили в нервной ткани в тот момент, когда активный вирус не мог быть выделен оттуда. ДНК ВПГ, экстрагированная из нервной ткани, служащей депо латентно существующего вируса, отличается от ДНК ВПГ, полученной из клеток, где происходит активная репликация вирусов. Современные данные свидетельствуют о том, что ДНК ВПГ в клетках, где инфекция протекает латентно, может существовать в циркулярной, или сцепленной, форме. Патогенез. Вирус проникает в организм через слизистые оболочки или участки поврежденной кожи. Репликация вируса начинается в клетках эпидермиса и собственно кожи. Независимо от наличия клинических признаков заболевания, репликация вируса происходит в объеме, достаточном для того, чтобы вирус мог внедриться в чувствительные или вегенативные нервные окончания. Однако всегда ли внедрение вируса в периферические ткани приводит к развитию латентной инфекции, неясно. Считается., что вирус, а скорее всего нуклеокапсид, транспортируется по аксону к телу нервной клетки в ганглии. Время, необходимое для распространения вируса от периферических тканей после его инокуляции до нервных узлов у человека, неизвестно. Во время первой фазы инфекционного процесса репликация вирусов происходит в ганглии и в окружающих его тканях. Затем по эфферентным путям, представленным периферическими чувствительными нервными окончаниями, активный вирус мигрирует, приводя к диссеминированной кожной инфекции. Эфферентное распространение вирусов к коже по периферическим чувствительным нервам позволяет объяснить факт обширного вовлечения новых поверхностей и высокую частоту новых высыпаний, находящихся на значительном удалении от участка первичной локализации везикул. Это явление характерно для лиц с первичным генитальным или орально-лабиальным герпесом. У подобных больных вирус можно выделить из нервной ткани, находящейся далеко от нейронов, иннервирующих место инокуляции. Внедрение вируса в окружающие ткани делает возможным распространение инфекции по слизистым оболочкам. После разрешения первичного заболевания из нервного ганглия не удается выделить ни активный вирус, ни поверхностные вирусные белки в количестве, поддающемся определению. Механизм поддержания вируса в латентном состоянии, а также механизмы, лежащие в основе реактивации ВПГ под воздействием различных факторов, неизвестны. Факторами реактивации являются ультрафиолетовое облучение, иммуносупрессия и травма кожи или ганглия. Анализ ДНК штаммов ВПГ, последовательно выделяемых из нескольких пораженных ганглиев одного больного, в большинстве случаев выявил идентичность результатов рестрикционного эндонуклеазного теста. Иногда, чаще у лиц с ослабленным иммунитетом, у одного больного можно выделить множество штаммов одного и того же подтипа вируса, что предполагает возможность экзогенного инфицирования различными штаммами одного подтипа. Иммунитет. Реакция организма на инфекцию во многом определяет вероятность развития заболевания, тяжесть его течения, риск развития латентной инфекции и персистенции вирусов, частоту последующих рецидивов ВПГ. Клиническое значение имеют механизмы как гуморального, так и клеточного иммунитета. Течение вирусной инфекции у больных с нарушениями механизмов клеточного иммунитета значительно тяжелее, чем у больных с недостаточностью гуморального иммунитета, например с агаммаглобулинемией. Экспериментальное удаление лимфоцитов из организма мышей свидетельствует о том, что Т-клетки играют важную роль в предотвращении летальной генерализованной инфекции. Антитела при этом оказывают вспомогательное тормозящее влияние на рост титра вируса в нервной ткани. Некоторые аспекты патогенеза заболевания могут быть связаны с иммунным ответом организма, например помутнение собственного вещества роговицы при рецидивах герпетического кератита. Было показано, что вирусные поверхностные гликопротеиды являются антигенами,... [стр. 1259 ⇒]

Проникновение некоторых энтеровирусов через слизистый барьер кишечника осуществляется с участием специфической популяции клеток, покрывающих пейеровы бляшки, известных как микроскладчатые (М) клетки. Эти клетки и, возможно, их аналоги в бронхиальной лимфоидной ткани, видимо, облегчают транспорт некоторых вирусов, включая реовирусы и энтеровирусы, в околопросветное пространство тонкого кишечника. Половой путь передачи, подразумевающий проникновение вирусов через слизистую оболочку мочеполовых путей и прямой кишки, может иметь важное значение для вируса простого герпеса типа 2, ЦМВ, вируса гепатита В и, вероятно, вируса ВТЛЧ или HI/LAV. У некоторых вирусов процессы внедрения, первичной репликации и избирательною накопления в какой-либо ткани могут протекать в одной и той же анатомической области. Примерами вирусных болезней этого типа могут быть инфекции верхних и нижних дыхательных путей, вызванные риновирусами, орто- и парамиксовирусами; энтерит, вызванный ротавирусами; поражения кожи, вызванные папилломавирусами (бородавки) и вирусами паравакцины (узелки доильщицы). В других случаях развитие заболевания происходит после распространения вируса дистальнее места его проникновения в организм, например в центральную нервную систему. Входными воротами для энтеровирусов служит желудочно-кишечный тракт, а затем, попав в центральную нервную систему, они вызывают менингит, энцефалит и полиомиелит. Входными воротами для вирусов кори и ветряной оспы служат дыхательные пути, а затем, распространяясь по организму, они приводят к поражению кожи (экзантемы) или к генерализованному вовлечению в патологический процесс внутренних органов. Для того чтобы попасть в ткани-мишени, вирусы используют нервные, гематогенные и лимфатические пути переноса. По нервам распространяются вирусы бешенства, простого герпеса, Herpesvirus simiae (обезьяний вирус В), ветряной оспы, опоясывающего герпеса и микроорганизмы, вызывающие зуд. Складывается впечатление, что вирус простого герпеса проникает в нерв через рецептор, локализующийся прежде всего около синаптического окончания, а не в области тела нервной клетки. Вирусы бешенства накапливаются на моторном конце пластинки нервно-мышечного соединения и могут использовать ацетилхолиновые рецепторы или структуры, прилежащие к ним, для проникновения в дистальные аксоны двигательных нейронов. Другие вирусы, включая вирус Ла-Кросс семейства буньявирусов и вирус Синдбис семейства тогавирусов, также концентрируются в области нервно-мышечного соединения, несмотря на то что их рецепторные молекулы не были идентифицированы. Вирус бешенства, кроме того, поражает мышечные веретена и распространяется по чувствительным нервам до ганглиев заднего корешка и спинного мозга. Скорость продвижения по нервам вирусов бешенства, простого герпеса и полиомиелита заставляет предположить, что эти агенты используют внутринейрональные механизмы, включая быстрый аксональный транспорт. Вызывающие зуд агенты, которые медленно распространяются вдоль нервных путей, могут представлять собой пример движения с использованием медленного аксонального транспорта. Инфекционное поражение леммоцитов (шванновские клетки) может представлять собой другой путь перемещения по центральной нервной системе. Распространение инфекции по нервным путям может играть роль не только при движении к центральной нервной системе, но и при распространении в ее пределах, а также и при движении к периферии. Обонятельные пути представляют собой особую категорию нервных путей, участвующих в распространении вирусов. Нейросенсорные обонятельные клетки образуют синапсы непосредственно с митральными клетками обонятельных луковиц в центральной нервной системе. В экспериментальных условиях интраназальная или аэрозольная инокуляция вирусов бешенства, простого герпеса, полиовируса и некоторых тогавирусов может привести к инфекционному поражению центральной нервной системы в результате проникновения их через обонятельные пути. Этот путь проникновения инфекции возможен и в естественных условиях, объясняя попадание вируса бешенства, а возможно и других вирусов, в центральную нервную систему человека. Однако непременным условием является контакт с аэрозолем, в котором вирусы находятся в высоком титре, как, например, в пещерах, населенных множеством инфицированных вирусом бешенства летучих мышей, или в лабораториях с большим числом искусственно зараженных экспериментальных животных. Обонятельный путь проникновения может объяснить локализацию вируса простого герпеса в области орбито-фронтальной и срединно-височной коры у больных с энцефалитами этой этиологии. [стр. 1200 ⇒]

В классе Sporozoa (споровики) патогенными представителями являются возбудители токсоплазмоза, кокцидиоза, саркоцистоза и малярии. Жизненный цикл возбудителей малярии характеризуется чередованием полового размножения (в организме комаров Anopheles) и бесполого (в клетках тканей и эритроцитах человека они размножаются путем множественного деления). Токсоплазмы имеют форму полулуний. Токсоплазмозом человек заражается от животных. Токсоплазмы могут передаваться через плаценту и поражать центральную нервную систему и глаза плода. Тип Ciliophora. Патогенный представитель — возбудитель балантидиаза — поражает толстый кишечник человека. Балантидии имеют многочисленные реснички и поэтому подвижны. Тип Microsporaвключает микроспоридии — маленькие (0,5—10 мкм) облигатные внутриклеточные паразиты, широко распространенные среди животных и вызывающие у ослабленных людей диарею и гнойно-воспалительные заболевания. № 8 Принципы классификации вирусов. В основу классификации вирусов положены следующие категории: • тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особенности воспроизводства вирусного генома; • размер и морфология вирионов, количество капсомеров и тип симметрии; • наличие суперкапсида; • чувствительность к эфиру и дезоксихолату; • место размножения в клетке; • антигенные свойства и пр. Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНКсодержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК- содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию. Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом. Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы. Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид. Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный Мбелок. Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрическийтип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральныйтип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа). № 9 Морфологические и тинкториальные свойства бактерий. Методы окраски. Морфологические свойства бактерий. Бактерии— микроорганизмы, не имеющие оформленного ядра (прокариоты). Бактерии имеют разнообразную форму и довольно сложную структуру, определяющую многообразие их функциональной деятельности. Для бактерий характерны четыре основные формы: сферическая (шаровидная), цилиндрическая (палочковидная), извитая и нитевидная. Бактерии шаровидной формы— кокки — в зависимости от плоскости деления и расположения относительно друг друга отдельных особей подразделяются на микрококки (отдельно лежащие кокки), диплококки (парные кокки), стрептококки (цепочки кокков), стафилококки (имеющие вид виноградных гроздьев), тетракокки (образования из четырех кокков) и сарцины (пакеты из 8 или 16 кокков). Палочковидные бактерии располагаются в виде одиночных клеток, дипло- или стрептобактерий. Извитые формы бактерий— вибрионы и спириллы, а также спирохеты. Вибрионы имеют вид слегка изогнутых палочек, спириллы — извитую форму с несколькими спиральными завитками. Размеры бактерий колеблются от 0,1 до 10 мкм. В состав бактериальной клетки входят капсула, клеточная стенка, цитоплазматическая мембрана и цитоплазма, в которой содержатся нук-леоид, рибосомы и включения. Некоторые бактерии снабжены жгутиками и ворсинками. Ряд бактерий образуют споры, которые располагаются терминально, субтерминально или центрально; превышая поперечный размер клетки, споры придают ей веретенообразную форму. [стр. 4 ⇒]

Различают просто устроенные и сложно устроенные вирусы. Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид. Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный Мбелок. Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрическийтип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральныйтип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа). Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения. Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм). Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНКсодержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию. Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомега ловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям — развитию миокардитов, панкреатитов, иммунодефицитов и др. Кроме обычных вирусов, известны и так называемые неканонические вирусы — прионы — белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10—20x100—200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта—Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды — небольшие молекулы кольцевой, суперспи-рализованной РНК, не содержащие белка, вызывающие заболевания у растений. № 14 Структура и химический состав вирусов и бактериофагов Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом. Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы. Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид. Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный Мбелок. Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной. Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрическийтип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральныйтип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа). Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения. [стр. 7 ⇒]

Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 10 4 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц. Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга. «Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса. Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства. Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации. Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Существуют следующие общие принципы сборки вирусов, имеющих разную структуру: 1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм; 2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа); 3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки; 4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы). Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции. Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции. № 27 Бактериофаги. Взаимодействие фага с бактериальной клеткой. Умеренные и вирулентные бактериофаги. Лизогения. Бактериофаги — вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и вызывать их растворение (лизис). Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги. Вирулентные фаги, проникнув в бактериальную клетку, автономно репродуцируются в ней и вызывают лизис бактерий. Процесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодействия вирусов человека и животных с клеткой хозяина. Однако для фагов, имеющих хвостовой отросток с сокращающимся чехлом, он имеет особенности. Эти фаги адсорбируются на поверхности бактериальной клетки с помощью фибрилл хвостового отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержащаяся в головке, проходит через полость хвостового стержня и активно впрыскивается в цитоплазму клетки. Остальные структурные элементы фага (капсид и отросток) остаются вне клетки. После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых частиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной стенки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30—40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии. Взаимодействие фагов с бактериальной клеткой характеризуется определенной степенью специфичности. По специфичности действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные... [стр. 14 ⇒]

При снижении резистентности организма амебы внедряются в стенку кишки и размножаются. Развивается кишечный амебиаз. Трофозоиты тканевой формы подвижны за счет формирования псевдоподий. Они проникают в стенку толстой кишки, вызывая некроз; способны фагоцитировать эритроциты; могут обнаруживаться в фекалиях человека. При некрозе образуются язвы. Клинически кишечный амебиаз проявляется в виде частого жидкого стула с кровью, сопровождающегося лихорадкой и дегидратацией. В испражнениях обнаруживают гной и слизь, иногда с кровью. Амебы с током крови могут попадать в печень, легкие, головной мозг, в результате чего развивается внекишечный амебиаз. Иммунитет:Нестойкий, активируется преимущественно клеточное звено. Микробиологическая диагностика.Основным методом является микроскопическое исследование испражнений больного, а также содержимого абсцессов внутренних органов. Мазки окрашивают раствором Люголя или гематоксилином. Серологические исследования (РНГА, ИФА, РСК): наиболее высокий титр антител в сыворотке крови выявляют при внекишечном амебиазе. Лечение:Применяют метронидазол, фурамид. Профилактика:выявление и лечение цистовыделителей и носителей амеб, проведение общесанитарных мероприятий. № 141 Значение открытия Д.И. Ивановского. Этапы развития вирусологии. Роль ученых в развитии вирусологии. Впервые существование вируса доказал в 1892 году Ивановский. В результате наблюдений он высказал предположение, что болезнь табака, под названием мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них - рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах. Ивановский открыл вирусы - новую форму существования жизни. Своими исследованиями он заложил основы ряда научных направлений вирусологии: изучение природы вируса, цитопаталогических вирусных инфекций, фильтрующихся форм микроорганизмов, хронического и латентного вирусоносительства. Этапы развития: Конец XIX — начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры, которые использовались как средство разделения возбудителей на бактерии и небактерии. Были открыты следующие вирусы: вирус табачной мозаики; ящура; желтой лихорадки; оспы и трахомы; полиомиелита; кори; вирус герпеса. 30-е годы — основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные. 1931 г. — в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза. Открыты: вирус гриппа; клещевого энцефалита. 40-е годы. Установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты — ДНК или РНК. Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи. 50-е годы:Открыты вирусы: аденовирусы; краснухи; вирусы парагриппа. 70-е годы:открытие в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов. Открыты вирусы: вирус гепатита B; ротавирусы, вирус гепатита A. 80-е годы. Развитие представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Открыты вирусы: иммунодефицита человека; вирус гепатита C. № 142 Возбудители ОРВИ. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика и лечение. Таксономия и классификация: РНК-содержащие вирусы. I семейство — Paramyxoviridae включает вирусы парагриппа человека (5 серотипов) и респираторно-синтициальный вирус (PC); II семейство — Picomaviridae включает 7 серотипов энтеровирусов Коксаки и ECHO, поражающих дыхательные пути, и 120 серотипов риновирусов; III семейство — Reoviridae включает 3 серотипа, вызывающих заболевания респираторного и желудочно-кишечного трактов; IV семейство — Coronaviridae включает 3 серотипа, также поражающих дыхательный и желудочно-кишечный тракты. ДНК-содержащие вирусы.V семейство — Adenoviridae. Представители этого семейства поражают глаза, кишечник, мочевой пузырь, 3 типа аденовирусов вызывают ОРВИ. Структура:. Средние размеры, сферическую, палочковидную или нитевидную формы. Большая часть возбудителей ОРВИ содержит однонитчатую РНК, кроме реовирусов, обладающих двунитчатой РНК, и ДНК-содержащих аденовирусов. Некоторые из них окружены суперкапсидом. Антигенная структура: сложная. У вирусов каждого рода есть общие антигены; вирусы имеют и типоспецифические антигены, по которым можно проводить идентификацию возбудителей с определением серотипа. В состав каждой группы вирусов ОРВИ входит различное количество серотипов и серовариантов. Большинство вирусов ОРВИ обладает гемагглютинируюшей способностью. РТГА основана на блокировании активности гемагглютининов вируса специфическими антителами. [стр. 87 ⇒]

Для каждой группы вирусов подобраны наиболее чувствительные клетки (для аденовирусов —эмбриональные клетки почек; для коронавирусов — эмбриональные клетки и клетки трахеи). В зараженных клетках вирусы вызывают ЦПЭ( цитопатический эффект). Культуры клеток используют также при идентификации возбудителей с цитолитической активностью (например, аденовирусов). Для этого применяют так называемую реакцию биологической нейтрализации вирусов в культуре клеток (РБН или РН вирусов). В ее основе — нейтрализация цитолитического действия вирусов типоспецифическми антителами. Иммунитет: вируснейтрализующие специфические IgA (обеспечивают местный иммунитет) и клеточный иммунитет. Местная выработка а-интерферона, появление которого в носовом отделяемом приводит к значительному снижению количества вирусов. Важной особенностью ОРВИ является формирование вторичного иммунодефицита. Постинфекционный иммунитет нестойкий, непродолжительный, типоспецифический. Большое число серотипов и разнообразие вирусов – высокая частота повторных заболеваний. Микробиологическая диагностика.Материал для исследования носоглоточная слизь, мазки-отпечатки и смывы из зева и носа. Экспресс-диагностика.Обнаруживают вирусные антигены в инфицированных клетках. Применяют РИФ (прямой и непрямой методы) с использованием меченных флюорохромами специфических антител, а также ИФА. Для труднокультивируемых вирусов используют генетический метод (ПЦР). Вирусологический метод.Индикацию вирусов в зараженных лабораторных моделях проводят по ЦПЭ, а также РГА и гемадсорбции (для вирусов с гемагглютинирующей активностью), по образованию включений (внутриядерные включения при аденовирусной инфекции, цитоплазматические включения в околоядерной зоне при реовирусной инфекции и т. п.), а также по образованию «бляшек», и «цветной пробе». Идентифицируют вирусы по антигенной структуре в РСК, РПГА, ИФА, РТГА, РБН вирусов. Серологический метод.Противовирусные антитела исследуют в парных сыворотках больного, полученных с интервалом в 10 дней. Диагноз ставят при увеличении титра антител как минимум в 4 раза. При этом определяется уровень IgG в таких реакциях, как РБН вирусов, РСК, РПГА, РТГА. Лечение: эффективного этиотропного - нет; неспецифическое – а-интерферон, оксолин (глазные капли), при вторичной бактериальной инфекции – антибиотики. Основное лечение – симптоматическое/патогенетическое. Антигистаминные препараты. Профилактика: неспецифическая – противоэпидемич. мероприятия. Специфической – нет. Для профилактики аденовирусов – пероральные живые тривалентные вакцины. № 143 Возбудитель гриппа. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика и лечение. Таксономия: семейство – Orthomyxoviridae, род Influenzavirus. Различают 3 серотипа вируса гриппа: А, В и С. Структура вируса гриппаА. Возбудитель гриппа имеет однонитчатую РНК, состоящую из 8 фрагментов. Подобная сегментарность позволяет двум вирусам при взаимодействии легко обмениваться генетической информацией и тем самым способствует высокой изменчивости вируса. Капсомеры уложены вокруг нити РНК по спиральному типу. Вирус гриппа имеет также суперкапсид с отростками. Вирус полиморфен: встречаются сферические, палочковидные, нитевидные формы. Антигенная структура. Внутренние и поверхностные антигены. Внутренние антигены состоят из РНК и белков капсида, представлены нуклеопротеином (NP-белком) и М-белками. NP-и М-белки — это типоспецифические антигены. NP-белок способен связывать комплемент, поэтому тип вируса гриппа обычно определяют в РСК. Поверхностные антигены — это гемагглютинин и нейраминидаза. Их структуру, которая определяет подтип вируса гриппа, исследуют в РТГА, благодаря торможению специфическими антителами гемагглютинации вирусов. Внутренний антиген – стимулирует Т-киллеры и макрофаги, не вызывает антителообразования. У вируса имеются 3 разновидности Н- и 2 разновидности N – антигенов. Иммунитет: Во время заболевания в противовирусном ответе участвуют факторы неспецифической защиты: выделительная функция организма, сывороточные ингибиторы, альфа-интерферон, специфические IgA в секретах респираторного тракта, которые обеспечивают местный иммунитет. Клеточный иммунитет - NK-клетки и специфические цитотоксические Т-лимфоциты, действующие на клетки, инфицированные вирусом. Постинфекционный иммунитет достаточно длителен и прочен, но высокоспецифичен (типо-, подтипо-, вариантоспецифичен). Микробиологическая диагностика.Диагноз «грипп» базируется на (1) выделении и идентификации вируса, (2) определении вирусных АГ в клетках больного, (3) поиске вирусоспецифических антител в сыворотке больного. При отборе материала для исследования важно получить пораженные вирусом клетки, так как именно в них происходит репликация вирусов. Материал для исследования — носоглоточное отделяемое. Для определения антител исследуют парные сыворотки крови больного. Экспресс-диагностика.Обнаруживают вирусные антигены в исследуемом материале с помощью РИФ (прямой и непрямой варианты) и ИФА. Можно обнаружить в материале геном вирусов при помощи ПЦР. Вирусологический метод.Оптимальная лабораторная модель для культивирования штаммов—куриный эмбрион. Индикацию вирусов проводят в зависимости от лабораторной модели (по гибели, по клиническим и патоморфологическим изменениям, ЦПД, образованию «бляшек», «цветной пробе», РГА и гемадсорбции). Идентифицируют вирусы по антигенной структуре. Применяют РСК, РТГА, ИФА, РБН (реакцию биологической нейтрализации) вирусов и др. Обычно тип вирусов гриппа определяют в РСК, подтип — в РТГА. Серологический метод.Диагноз ставят при четырехкратном увеличении титра антител в парных сыворотках от больного, полученных с интервалом в 10 дней. Применяют РТГА, РСК, ИФА, РБН вирусов. Лечение: симптоматическое/патогенетическое. А-интерферон – угнетает размножение вирусов. 1. Препараты - индукторы эндогенного интерферона. Этиотропное лечение - ремантидин – препятствует репродукции вирусов, блокируя М-белки. Арбидол – действует на вирусы А и В. [стр. 88 ⇒]

Я обнаруживал то, что можно только определить как "чужеродный белок" и что, на самом деле, может быть что угодно. [14] А вот, что обнаружил Броуэр. Так, например, канцерогенный вирус SV40 был обнаружен в почках обезьян, которые используются для изготовления полиомиелитной вакцины. Этот факт был открыт в 1960 г. Свитом и Хиллеманом. Однако миллионы людей были вакцинированы в течение последнего десятилетия вакциной, приготовленной подобным образом. Можно задаться вопросом, у скольких вакцинированных людей развились онкологические заболевания спустя многие годы после такой вакцинации. Было доказано, что вирус SV40 провоцирует образование опухолей у хомяков и преобразует in vitro ( в пробирке) нормальные человеческие клетки в канцерогенные. Кроме этого, следует отметить, что формалин не убивает вирус SV40. Он сохраняет все свои свойства в процессе обработки формалином, то есть при обязательном процессе изготовления вакцины из инактивированного вируса полиомиелита. Это стало известно нам из двух публикаций в журнале "American Review of respiratory diseases" (том 88, 3 сентября 1963 г.) и в журнале "Postgraduate Medicine" (том 35, 5 мая 1964 г.). Доктор Леонард Хейфлик, работающий в Институте анатомии и биологии Вистара (Филадельфия, США), в статье, опубликованной в журнале "Laboratory Practice-U.S.A." в декабре 1970 г., писал следующее: "Почки собак, используемые в настоящее время в Америке для изготовления вакцины против кори, содержат непредвиденный потенциал вирусной флоры. Известны разные канцерогенные вирусы собак, в том числе те, которые приводят к образованию папиллом, венерических собачьих опухолей, а также собачьей мастоклеточной лейкемии... Все знают, что наиболее важные канцерогенные вирусы животных (те, которые могут быть идентифицированы у приматов, SV40 и канцерогенные аденовирусы) проявляют свои канцерогенные качества только тогда, когда они попадают в организм другого вида. Никакой канцерогенный вирус примата не приводит к образованию опухолей у того вида животного, собственный вирус которого идентичен вновь приобретенному. Однако эти же вирусы могут вызвать образование опухолей у гетерогенных (чужеродных) видов животных. Поэтому SV40 и канцерогенный аденовирус являются опухолеобразующими не в своей родной среде, а только у других видов животных. Вот наш ответ на вопрос о безопасности для человека вирусных вакцин. Наш вывод будет следующим: риск возникновения онкологических заболеваний будет более высоким при использовании вакцин, которые приготовлены с использованием клеточных культур животных, чем тех вакцин, которые приготовлены с использованием клеточных культур человека; канцерогенный потенциал вакцины будет значительно ниже, если она приготовлена с использованием клеточных культур животного, которому эта вакцина и предназначена ." Профессор Ж. Клаузен из Института превентивной медицины при Университете Оденса (Дания) в марте 1973г.заявил: "Миллионам людей была введена полиомиелитная вакцина, зараженная опухолеобразующим обезьянним вирусом SV 40. Вполне вероятно, что пройдёт 20 лет или более, прежде чем возможные последствия этого вируса смогут проявить себя Доктор Леонард Хейфлик, который стал профессором микробиологии в Стенфордском университете штата Калифорния, США, написал в американском журнале "Science" (18 мая 1972 г. с. 813 и 814): "Вакцины против человеческих вирусов принципиально изготавливаются на основе культуры тканей почек обезьян и первичных эмбриональных культур цыплят; как первые, так и вторые могут быть заражены ..." Исследователи Эссекс и Алрой из группы профессора Р.Галло обвиняют полиомиелитную вакцину, изготовленную на основе культуры ткани почек африканских зеленых обезьян в распространении СПИДа (журнал "Science" от 4 октября 1985 г.). В журнале "Медицинская помощь" ("Concours medical") за сентябрь 1969 г. можно прочитать следующее: "Проблема случайного заражения вакцин вирусами или другими инфекционными агентами имеет большое значение, и она приобрела чрезвычайную значимость в вирусологии в последние десять лет. Теоретически у любого вида животных, в эмбрионах или клеточных культурах, используемых для производства вакцин, могут "уживаться " инородные вирусы. Вы можете сказать, что достаточно разработать лабораторные методики, позволяющие обнаруживать и, устранять все патогенные агенты. Однако недавний опыт напоминает нам об излишней доверчивости. Потому что он доказывает нам существование вирусов, природа которых еще до сих пор неизвестна и которые пока невозможно обнаружить... ". Итак, в 1960 г. Свит и Хиллеман открыли существование обезьяньего вируса SV40 в клеточных культурах почек обезьян подвида резус, используемых для приготовления живой полиомиелитной вакцины. В начале текущего десятилетия Рубин разработал лабораторную методику, позволяющую обнаруживать вирус лейкоза птиц при выращивании кур, а также в куриных яйцах, поступающих из птицефабрик. Итак, имеются все основания считать, что этими вирусами, по крайней мере до 1962 г., была заражена большая часть живых вакцин против желтой лихорадки или против кори, так как эти вакцины получали на основе куриных эмбрионов или куриных эмбриональных культур. Однако в чём же суть? Всё очень просто - обезьяний вирус SV40 провоцировал развитие саркомы, когда его прививали хомякам. Вирус лейкозаприд, как уже многие знают, является причиной не только лейкемии и других заболеваний кур, но он вызывает формирование злокачественных опухолей у различных видов млекопитающих, в том числе и у обезьян, что было подтверждено рядом последних научных работ. Возникает естественный вопрос: воздействует ли он негативно на организм человека? В поддержку моей собственной гипотезы, основанной на том, что вакцинации являются причиной СПИДа, я процитирую отчёт группы немецких ученых Хайдельбергского центра, опубликованный в 1981 г. Из него следует, что вирус SV40 был обнаружен в опухолях мозга человека. 25 % этих опухолей содержат вирус SV40 не только в его естественной (дикой) форме, но и в совершенно особенной форме, которая произошла из первой (дикой) формы (Krieg et al., Proc. Ant. Acad. Sci., 78-6646-1984). Этот вирус не введен в геном организма. Он не является инфицированным. Его особенность определяется тем, что в нем просматриваются следы изменений его генетического аппарата. Однако, не будучи способным формировать свою собственную вирусную оболочку, этот вирус становится не чувствительным к воздействиям иммунной системы субъекта (статья опубликована в журнале "La Recherche", №129, январь 1982 г.). 84... [стр. 85 ⇒]

...в журнале "Монография национального института онкологии" ("National Cancer Institute Monograph") была опубликована статья, в которой сообщалось: "Фактически то, что SV40 ускоряет репродукцию аденовируса человека в клеточных культурах почек обезьян, и то, что можно получить гибриды аденовируса и SV40 в культурах, зараженных этими двумя вирусами, приводит нас к следующему выводу: гибридизация вирусов может осуществляться при совместном инфицировании клеток этими вирусами. Мы обнаружили случаи двойного заражения клеток вирусом SV40 и ретровирусом, SV40 и простым вирусом бешенства". В 1966 г. профессор Львов привел яркий пример аденовируса 7 (вирус гриппа), который образует вместе с SV40 гибрид, содержащий генетический материал первого и оболочку второго, то есть он имеет ярко выраженные онкологические свойства. Десятки тысяч американских солдат были недавно подвергнуты экспериментальной противогриппозной вакцинации с подобной комбинацией. Поэтому американское правительство вынуждено было срочно изъять из продажи большое количество вакцин, зараженных вирусом SV40. В "Монографии национального института онкологии" за 29 декабря 1968 года можно было прочитать другие сообщения и выводы, сделанные многими учёными или научными группами: "Как показали многочисленные исследования, мы никогда не сможем утверждать, что какая-либо клеточная культура может быть свободна от заражения, потому что необходимо принимать во внимание то, что с помощью имеющихся в нашем арсенале методов мы способны обнаружить только известные агенты. Теоретические возможности всегда безграничны, и мы должны признать, что каждый раз, когда живая или инактивированная вакцина предназначена для инъекции, существует потенциальный риск. Хотя мы все надеемся, что этот риск не заслуживает внимания или маловероятен, его реальная вероятность может быть определена только с помощью наблюдения" (Ф.С. Робине, School of Medicine - Case Western Reserve University). "Значительное число доказательств, приведенных во время Конгресса или напечатанных в научной литературе, подтвердили присутствие вирусов, онкогенных агентов, их антигенов и антител. Все они находятся в так называемых нормальных тканях, полученных от приматов и не приматов и используемых в качестве источника клеток для репродуцирования вирусов, необходимых при производстве вакцин для человека" (О.Н.Феллоус. Plum Island Animal Disease Laboratory, Animal Disease and Parasite Research Division - U.S. Depart ment of Agriculture). "Мы изготовили некоторое количество экспериментальных вакцин на основе культур клеток почек зеленых обезьян. Животные, использованные как источник клеточных тканей для этих опытов, находились на карантине не менее 6 нед. перед тем, как были использованы в опытах. Более того, обезьяны были тестированы серологическим методом для определения наличия антител к вирусам SV5 и SA1. Животные, серопозитивные к SA1, были исключены из исследований. Однако мы оказались в затруднении найти обезьян, которые были бы серонегативны к SV5" (Роберт Н.Халл, Lilly Research Laboratories, Индианаполис). "К нашему удивлению, необычно высокой оказалась инфицированность вирусами культур тканей, рассматриваемых как нормальные. С февраля 1966 г. по февраль 1967 г. мы культивировали и изучили 417 серий культур клеток почек обезьян, полученных от 417 обезьян. Наблюдение продолжалось до тех пор, пока культуры клеток находились в хорошем состоянии. Из 227 обезьян подвида резус (RhM) из Индии и 190 африканских зеленых обезьян из Эфиопии (GM) у 225 почечная ткань была заражена вирусами. Около 50% из них производили каждый месяц один или несколько вирусов, независимо от их подвида или сезонного периода, в течение которого ткани были взяты на анализ. Хотя частота появления скрытых вирусов в так называемых нормальных клетках была достаточно большой, однако эти вирусы остались не обнаруженными. Распознавание скрытых вирусов требует сложных исследований и долгоживущих клеточных культур. При исследовании 86 серий клеточных культур, проведенном в промежутке между 14-м и 21-м днем после внесения вируса в культуру, что является обычной продолжительностью вирологических исследований, только в 2 — 4 % случаев удалось обнаружить вирусы. Однако, когда эти же самые серии исследовались между 29-м и 55-м днём, то процент культур, зараженных вирусами, был значительно выше. Более того, от длительности карантина зависела вероятность инфицирования теми или иными вирусами. С 30-го по 90-й день карантина исключалось заражение вирусом SV5 и вирусом кори. И наоборот, вирус SV40 и вирусы, близкие к группе бешенств, присутствовали в течение длительного периода в почках обезьян" (С.Д. Хсанг, New York University School of Medicine, публикация в "National Cancer Institute Monograph", 29 декабря 1968 г.). Все процитированные отчёты свидетельствуют о том, что: - в вакцинах всегда присутствуют инородные вирусы животных, даже если предприняты экстремальные меры предосторожности для того, чтобы оградить их от всех известных вирусов. Существуют вирусы и ретровирусы, которые не были известны до 1994 г.; - вакцины, введенные физическим лицам, обладают способностью не только взаимодействовать между собой, но также взаимодействовать со специфическими для рода человеческого вирусами и ретровирусами, которые "спят" в организме человека до определенного момента по причине взаимной адаптации между вирусом и организмом. Эти вирусы и ретровирусы квалифицируются как дефектные. В силу этого вполне логично считать принцип вакцинации чрезвычайно опасным. В течение пятидесяти лет многочисленные предупреждения в отношении вакцинации, сделанные авторитетными представителями научного и медицинского мира, были проигнорированы. Начиная с 1926 г., доктор Тиссо, профессор общей физиологии Музея истории природы, посвятивший свою жизнь глубоким исследованиям элементов, образующих живую клетку, выступал против серьёзных пастеровских заблуждений в отношении последствий вакцинации. В 1946 г. он писал о противодифтеритной вакцинации: "В настоящее время вопреки истине Институт Луи Пастера продолжает утверждать, что эта вакцинация безвредна и эффективна. Подобное утверждение не соответствует истине. Поступая так, он берёт на себя серьезную ответственность за состояние здоровья французов, с которыми он намерен обращаться как с подопытными морскими свинками. Принудительная вакцинация, словно животных, опасными, вирулентными, живыми микробами, которые к тому же, как с точки зрения терапии, так и в общем смысле, неэффективны, является серьёзным посягательством на свободу человека распоряжаться самим собой, то есть на свободу, провозглашенную в Декларации прав человека 1789 г. Закон от 25 июня 1938 г. является посягательством на свободу и основные права человека. Он имеет неконституционный характер. Его голосование было предопределено фальшивыми утверждениями. В течение 1938 г. его последствия были пагубными и в 85... [стр. 86 ⇒]

И современная сеть как нельзя лучше для этого приспособлена, к сожалению. 3. Классификация компьютерных вирусов В зависимости от проявления и дальнейшего поведения вирусы условно можно разделить на следующие группы: «черви», троянские кони, программы группы риска, непосредственно вирусы. Вирусы классифицируются по следующим основным признакам: 1. среда обитания 2. способ заражения 3. степень воздействия 4. особенности алгоритма работы По среде обитания вирусы можно разделить на: 1. файловые 2. загрузочные 3. файлово-загрузочные 4. сетевые 5. макро-вирусы По способу заражения вирусы делятся на: 1. резидентные 2. нерезидентные По степени воздействия вирусы можно разделить на следующие виды: 1. неопасные, не мешающие работе компьютера, но уменьшающие объем свободной оперативной памяти и памяти на дисках. Действия таких вирусов проявляются в каких-либо графических или звуковых эффектах 2. опасные вирусы, которые могут привести к различным нарушениям в работе компьютера 3. очень опасные, воздействие которых может привести к потере программ, уничтожению данных, стиранию информации в системных областях диска. По особенностям алгоритма вирусы трудно классифицировать из-за большого разнообразия. Простейшие вирусы - паразитические, они изменяют содержимое файлов и секторов диска и могут быть достаточно легко обнаружены и уничтожены. Можно отметить вирусы-репликаторы, называемые червями, которые распространяются по компьютерным сетям, вычисляют адреса сетевых компьютеров и записывают по этим адресам свои копии. Известны вирусы-невидимки, называемые стелс-вирусами, которые очень трудно обнаружить и обезвредить, так как они перехватывают обращения операционной системы к пораженным файлам и секторам дисков и подставляют вместо своего тела незараженные участки диска. Наиболее трудно обнаружить вирусы-мутанты, содержащие алгоритмы шифровки-расшифровки, благодаря которым копии одного и того же вируса не имеют ни одной повторяющейся цепочки байтов. Имеются и так называемые квазивирусные или «троянские» программы, которые хотя и не способны к самораспространению, но очень опасны, так как, маскируясь под полезную программу, разрушают загрузочный сектор и файловую систему дисков. 3.1 Загрузочные вирусы Загрузочные вирусы заражают загрузочный (boot) сектор флоппи-диска и boot-сектор или Master Boot Record (MBR) винчестера. Принцип действия загрузочных вирусов основан на алгоритмах запуска операционной системы при включении или перезагрузке компьютера - после необходимых тестов установленного оборудования программа системной загрузки считывает первый физический сектор загрузочного диска (A:, C: или CD-ROM в зависимости от параметров, установленных в BIOS Setup) и передает на него управление. 3.2 Файловые вирусы К данной группе относятся вирусы, которые при своем размножении тем или иным способом используют файловую систему какой-либо или каких-либо ОС. Существуют вирусы, заражающие файлы, которые содержат исходные тексты программ, библиотечные или объектные модули. Возможна запись вируса и в файлы данных, но это случается либо в результате ошибки вируса, либо при проявлении его агрессивных свойств. [стр. 2 ⇒]

Своевременное обнаружение зараженных вирусами файлов и дисков, полное уничтожение обнаруженных вирусов на каждом компьютере позволяют избежать распространения вирусной эпидемии на другие компьютеры. Главным оружием в борьбе с вирусами являются антивирусные программы. Они позволяют не только обнаружить вирусы, в том числе вирусы, использующие различные методы маскировки, но и удалить их из компьютера. Последняя операция может быть достаточно сложной и занять некоторое время. Существует несколько основополагающих методов поиска вирусов, которые применяются антивирусными программами. Наиболее традиционным методом поиска вирусов является сканирование. Для обнаружения, удаления и защиты от компьютерных вирусов разработано несколько видов антивирусных программ: 1. программы-детекторы 2. программы-доктора или фаги 3. программы-ревизоры (инспектора) 4. программы-фильтры (мониторы) 5. программы-вакцины или иммунизаторы 6. сканер 4.1 Программы-детекторы Программы-детекторы осуществляют поиск характерной для конкретного вируса сигнатуры в оперативной памяти и в файлах и при обнаружении выдают соответствующее сообщение. Недостатком таких антивирусных программ является то, что они могут находить только те вирусы, которые известны разработчикам таких программ. 4.2 Программы-доктора Программы-доктора или фаги, а также программы-вакцины не только находят зараженные вирусами файлы, но и «лечат» их, то есть удаляют из файла тело программы-вируса, возвращая файлы в исходное состояние. В начале своей работы фаги ищут вирусы в оперативной памяти, уничтожая их, и только затем переходят к «лечению» файлов. Среди фагов выделяют полифаги, то есть программы-доктора, предназначенные для поиска и уничтожения большого количества вирусов. 4.3 Программы-ревизоры (инспектора) Программы-ревизоры (инспектора) относятся к самым надежным средствам защиты от вирусов. Ревизоры (инспектора) проверяют данные на диске на предмет вирусов-невидимок, изучают, не забрался ли вирус в файлы, нет ли посторонних в загрузочном секторе жесткого диска, нет ли несанкционированных изменений реестра Windows. Причем инспектор может не пользоваться средствами операционной системы для обращения к дискам (а значит, активный вирус не сможет это обращение перехватить). 4.4 Программы - фильтры (мониторы) Программы-фильтры (мониторы) или «сторожа» представляют собой небольшие резидентные программы, предназначенные для обнаружения подозрительных действий при работе компьютера, характерных для вирусов. Такими действиями могут являться: 1. попытки коррекции файлов с расширениями COM, EXE 2. изменение атрибутов файла 3. прямая запись на диск по абсолютному адресу 4. запись в загрузочные сектора диска 5. загрузка резидентной программы. 4.5 Вакцины или иммунизаторы Вакцины или иммунизаторы - это резидентные программы, предотвращающие заражение файлов. Вакцины применяют, если отсутствуют программы-доктора, «лечащие» этот вирус. Вакцинация возможна только от известных вирусов. Вакцина модифицирует программу или диск таким образом, чтобы это не отражалось на их работе, а вирус будет воспринимать их зараженными и поэтому не внедрится. В настоящее время программы-вакцины имеют ограниченное применение. 4.6 Сканер Принцип работы антивирусных сканеров основан на проверке файлов, секторов и системной памяти, а также поиске в них известных и новых (неизвестных сканеру) вирусов. Для поиска известных вирусов... [стр. 5 ⇒]

На сегодняшний день известно свыше 50 тыс. компьютерных вирусов. Существует много разных версий относительно даты рождения первого компьютерного вируса. Однако большинство специалистов сходятся на мысли, что компьютерные вирусы, как таковые, впервые появились в 1986 году, хотя исторически возникновение вирусов тесно связано с идеей создания самовоспроизводящихся программ. Одним из "пионеров" среди компьютерных вирусов считается вирус "Brain", созданный пакистанским программистом по фамилии Алви. Только в США этот вирус поразил свыше 18 тыс. компьютеров. В начале эпохи компьютерных вирусов разработка вирусоподобных программ носила чисто исследовательский характер, постепенно превращаясь на откровенно вражеское отношение к пользователям безответственных, и даже криминальных "элементов". В ряде стран уголовное законодательство предусматривает ответственность за компьютерные преступления, в том числе за создание и распространение вирусов. Вирусы действуют только программным путем. Они, как правило, присоединяются к файлу или проникают в тело файла. В этом случае говорят, что файл заражен вирусом. Вирус попадает в компьютер только вместе с зараженным файлом. Для активизации вируса нужно загрузить зараженный файл, и только после этого, вирус начинает действовать самостоятельно. Некоторые вирусы во время запуска зараженного файла становятся резидентными (постоянно находятся в оперативной памяти компьютера) и могут заражать другие загружаемые файлы и программы. Другая разновидность вирусов сразу после активизации может быть причиной серьезных повреждений, например, форматировать жесткий диск. Действие вирусов может проявляться по разному: от разных визуальных эффектов, мешающих работать, до полной потери информации. Большинство вирусов заражают исполнительные программы, то есть файлы с расширением .EXE и .COM, хотя в последнее время большую популярность приобретают вирусы, распространяемые через систему электронной почты. Следует заметить, что компьютерные вирусы способны заражать лишь компьютеры. Поэтому абсолютно абсурдными являются разные утверждения о влиянии компьютерных вирусов на пользователей компьютеров. Основные источники вирусов: дискета, на которой находятся зараженные вирусом файлы; компьютерная сеть, в том числе система электронной почты и Internet; жесткий диск, на который попал вирус в результате работы с зараженными программами; вирус, оставшийся в оперативной памяти после предшествующего пользователя. Основные ранние признаки заражения компьютера вирусом: уменьшение объема свободной оперативной памяти; замедление загрузки и работы компьютера; непонятные (без причин) изменения в файлах, а также изменения размеров и даты последней модификации файлов; ошибки при загрузке операционной системы; невозможность сохранять файлы в нужных каталогах; непонятные системные сообщения, музыкальные и визуальные эффекты и т.д. Признаки активной фазы вируса: исчезновение файлов; форматирование жесткого диска; невозможность загрузки файлов или операционной системы. Существует очень много разных вирусов. Условно их можно классифицировать следующим образом: 1) загрузочные вирусы или BOOT-вирусы заражают boot-секторы дисков. Очень опасные, могут привести к полной потере всей информации, хранящейся на диске; 2) файловые вирусы заражают файлы. Делятся на: вирусы, заражающие программы (файлы с расширением .EXE и .COM); макровирусы вирусы, заражающие файлы данных, например, документы Word или рабочие книги Excel; вирусы-спутники используют имена других файлов; вирусы семейства DIR искажают системную информацию о файловых структурах; 3) загрузочно-файловые вирусы способные поражать как код boot-секторов, так и код файлов; 4) вирусы-невидимки или STEALTH-вирусы фальсифицируют информацию прочитанную из диска так, что программа, какой предназначена эта информация получает неверные данные. Эта технология, которую, иногда, так и называют Stealth-технологией, может использоваться как в BOOT-вирусах, так и в файловых вирусах; 5) ретровирусы заражают антивирусные программы, стараясь уничтожить их или сделать нетрудоспособными; 6) вирусы-черви снабжают небольшие сообщения электронной почты, так называемым заголовком, который по своей сути есть Web-адресом местонахождения самого вируса. При попытке прочитать такое... [стр. 1 ⇒]

Очень опасные, так как обнаружить их очень тяжело, в связи с тем, что зараженный файл фактически не содержит кода вируса. Если не принимать меры для защиты от компьютерных вирусов, то следствия заражения могут быть очень серьезными. В ряде стран уголовное законодательство предусматривает ответственность за компьютерные преступления, в том числе за внедрение вирусов. Для защиты информации от вирусов используются общие и программные средства. К общим средствам, помогающим предотвратить заражение и его разрушительных последствий относят: резервное копирование информации (создание копий файлов и системных областей жестких дисков); избежание пользования случайными и неизвестными программами. Чаще всего вирусы распространяются вместе с компьютерными программами; перезагрузка компьютера перед началом работы, в частности, в случае, если за этим компьютером работали другие пользователи; ограничение доступа к информации, в частности физическая защита дискеты во время копирования файлов с нее. К программным средствам защиты относят разные антивирусные программы (антивирусы). Антивирус - это программа, выявляющая и обезвреживающая компьютерные вирусы. Следует заметить, что вирусы в своем развитии опережают антивирусные программы, поэтому даже в случае регулярного пользования антивирусов, нет 100% гарантии безопасности. Антивирусные программы могут выявлять и уничтожать лишь известные вирусы, при появлении нового компьютерного вируса защиты от него не существует до тех пор, пока для него не будет разработан свой антивирус. Однако, много современных антивирусных пакетов имеют в своем составе специальный программный модуль, называемый эвристическим анализатором, который способен исследовать содержимое файлов на наличие кода, характерного для компьютерных вирусов. Это дает возможность своевременно выявлять и предупреждать об опасности заражения новым вирусом. Различают такие типы антивирусных программ: 1) программы-детекторы: предназначены для нахождения зараженных файлов одним из известных вирусов. Некоторые программы-детекторы могут также лечить файлы от вирусов или уничтожать зараженные файлы. Существуют специализированные, то есть предназначенные для борьбы с одним вирусом детекторы и полифаги, которые могут бороться с многими вирусами; 2) программы-лекари: предназначены для лечения зараженных дисков и программ. Лечение программы состоит в изъятии из зараженной программы тела вируса. Также могут быть как полифагами, так и специализированными; 3) программы-ревизоры: предназначены для выявления заражения вирусом файлов, а также нахождение поврежденных файлов. Эти программы запоминают данные о состоянии программы и системных областей дисков в нормальном состоянии (до заражения) и сравнивают эти данные в процессе работы компьютера. В случае несоответствия данных выводится сообщение о возможности заражения; 4) лекари-ревизоры: предназначены для выявления изменений в файлах и системных областях дисков и, в случае изменений, возвращают их в начальное состояние. 5) программы-фильтры: предназначены для перехвата обращений к операционной системе, которые используются вирусами для размножения и сообщают об этом пользователя. Пользователь может разрешить или запретить выполнение соответствующей операции. Такие программы являются резидентными, то есть они находятся в оперативной памяти компьютера. 6) программы-вакцины: используются для обработки файлов и boot-секторов с целью предупреждения заражения известными вирусами (в последнее время этот метод используется все чаще). Следует заметить, что выбор одного "наилучшего" антивируса крайне ошибочное решение. Рекомендуется использовать несколько разных антивирусных пакетов одновременно. Выбирая антивирусную программу следует обратить внимание на такой параметр, как количество распознающих сигнатур (последовательность символов, которые гарантированно распознают вирус). Второй параметр - наличие эвристического анализатора неизвестных вирусов, его присутствие очень полезно, но существенно замедляет время работы программы. На сегодняшний день существует большое количество разнообразных антивирусных программ. Рассмотрим коротко, распространенные в странах СНГ. DRWEB Один из лучших антивирусов с мощным алгоритмом нахождения вирусов. Полифаг, способный проверять файлы в архивах, документы Word и рабочие книги Excel, выявляет полиморфные вирусы, которые в последнее время, получают все большее распространение. Достаточно сказать, что эпидемию очень опасного вируса OneHalf остановил именно DrWeb. Эвристический анализатор DrWeb, исследуя программы на наличие фрагментов кода, характерных для вирусов, разрешает найти почти 90% неизвестных вирусов. При загрузке программы, в первую очередь DrWeb проверяет самого себя на целостность, после чего тестирует оперативную память. Программа может работать в диалоговом режиме, имеет удобный настраиваемый интерфейс пользователя. ADINF... [стр. 2 ⇒]

Гораздо лучше. Здесь изложена удивительная, иная сторона представления о вирусах. Вирусы – друзья, а не враги! Вирусология полностью изменилась. Изменение парадигмы произошло как-то незаметно, и в настоящее время фокус сместился с восприятия вирусов как возбудителей заболеваний на их положительные качества: вирусы как фактор эволюции, вирусы и инновации, вирусы у истоков жизни на Земле или по крайней мере их присутствие на планете с момента зарождения на ней жизни. На протяжении истории развития человечества вирусы являются нашими своеобразными «бодибилдерами» или генными модуляторами. Что такое вирусы? Откуда они взялись? Являются ли вирусы живыми микроорганизмами? В силу каких причин и при каких условиях они становятся возбудителями заболеваний? Ознакомившись с этой книгой, вы, уважаемый читатель, сможете ответить на следующие вопросы: готовы ли вы, как и раньше, плавать в море; действительно ли детские соски-пустышки, произведенные в странах Восточной и Юго-Восточной Азии, могут вызывать развитие рака и нужно ли от них отказываться; надо ли бояться салата из-за наличия в нем большого количества вирусов, вызывающих вирусные заболевания растений? Из этой книги вы немало узнаете о том, как устроена жизнь: о строении клеток и генов, о вкладе вирусов в способность организмов адаптироваться к внешним условиям, вы зададитесь вопросом, могут ли вирусы влиять на свободную волю человека, и почерпнете информацию о степени нашего «родства» с бактериями и червями и о том, как вирусы могут заменить секс. Вы узнаете, что именно вирусы «изобрели» все иммунные системы и «вооружили» клетки противовирусной защитой. Разобраться в этих вопросах гораздо проще, чем может показаться, и я это утверждаю, исходя из собственного опыта. Какова роль вирусов в развитии рака и как вирусы используются в генной терапии? Действительно ли «прыгающие» гены, которые не что иное, как «запертые в клетке вирусы», отвечают за гениальность? Известно ли вам, что вирусы способны «видеть»? На самом деле это почти так, и они воспринимают мир в голубом цвете! Из книги вы узнаете, какие меры были предприняты для спасения каштановых деревьев, откуда на тюльпанах появились полоски, а на голубых балконных петуньях белые вкрапления (все дело, конечно, в вирусах) и как вирусы вызвали первый финансовый кризис, называемый «тюльпаномания». И наконец, треть населения планеты, вероятно, хочет знать, как контролировать массу тела или бороться с ожирением. (И тут дело в вирусах? Да, конечно.) Вирусы всегда были и до сих пор причастны ко всему вышеупомянутому. А теперь давайте рассмотрим «историю успеха» вирусов. В 2009 г., когда отмечалось двухсотлетие со дня рождения Чарлза Дарвина, я обедала с коллегами из Института специальных исследований в Берлине. Во время разговора я поинтересовалась их мнением о происхождении жизни на Земле. Среди моих собеседников были философы, историки, социологи и юристы – что они думали по этому поводу? Большой взрыв? «И уж конечно же, не Адам и Ева», – сказали они, отвергая учение о сотворении мира. Но их реакция на мой вопрос в целом вызвала ощущение растерянности и беспомощности. «Раз именно вы задаете этот вопрос, – отметил один из ученых, – значит, это имеет какое-то отношение к вирусам». Да, именно так я и думаю: вирусы были в самом начале или по крайней мере оказали влияние на жизнь вскоре после ее зарождения. История медицины обусловила формирование одностороннего представления о вирусах как о возбудителях заболеваний. Мы узнали о вирусах именно от медиков. Большинство вирусных заболеваний неизлечимо – эффективного лечения нет, что способствовало формированию негативного мнения о вирусах. На протяжении веков люди были бессильны против вирусных инфекций. Полиомиелит, корь, ветряная оспа и грипп уничтожали культуры, решали исход войн, приводили к разрушению городов и истребляли население на огромных территориях. Люди были не в состоянии отличить вирусные инфекции от бактериальных, но, в сущности, в этом не было необходимости, поскольку, как свидетельствуют результаты самых последних исследований, бактерия Yersinia pestis , возбудитель чумы, приобрела столь выраженный смертоносный характер в силу воздействия... [стр. 7 ⇒]

Вирусы по большей части локализуются в определенных клетках-хозяевах, в ряде случаев имеют оболочку, заимствованную у клетки-хозяина, на поверхности которой имеются рецепторы для связывания со специфической клеткой-хозяином. Это патогены, возбудители заболеваний, которые вредят клеткам-хозяевам, злоупотребляют их «гостеприимством» ради собственного потомства, маскируются и используют принцип троянского коня. Короче говоря, вирусы – это враги. В последние годы мы выяснили, что практически все из вышеперечисленного не соответствует действительности. По размеру вирусы бывают больше многих бактерий. Вирусы и сами могут стать хозяевами для других вирусов, а по размеру могут намного превосходить наночастицы или быть намного меньше их, и на самом деле они не всегда представляют собой частицы! По размеру вирусы могут отличаться в 10 000 раз – очень широкий диапазон; кроме того, у них весьма разнообразная морфология, около десятка разных типов геномов и множество совершенно разных стратегий репликации. Число генов у вируса может составлять от 0 (!) до 2500. Для сравнения: у человека 20 000 генов, всего в 10 раз больше. «Ноль генов» характерен для вироидов, хотя они, как правило, не считаются вирусами. Различаются вирусы, которые содержат нуклеиновые кислоты, но не имеют белковой оболочки или (наоборот) имеют только белковую оболочку при отсутствии нуклеиновых кислот. Последние являются прионами, которые зачастую не считаются вирусами, но я бы все же отнесла их к вирусам. Существуют вирусы только с посторонними генами, без собственных, например вирусы экзотических растений, поли-ДНК-вирусы (PDV) – факт, который может нам кое-что рассказать об эволюции. Кроме того, есть эндогенные вирусы, никогда не покидающие своих клеток-хозяев, а также рудиментарные вирусы, «прыгающие» в наших геномах. Эти два типа вирусов не имеют оболочки, поэтому являются «запертыми», «заблокированными» вирусами, не способными перемещаться из одной клетки в другую. Вирусы – мобильные (генетические) элементы – полезно ли это определение? Да, вирусам нужна энергия, но необязательно клетки-хозяина. Подойдет химическая энергия, а она вырабатывается «черными курильщиками», в окружении которых возникла жизнь и куда не проникает солнечный свет. Вирусам нужно прибежище, компартменты, а еще глина, то есть минеральные вещества, как ускоряющие процесс факторы – тот самый «маленький теплый пруд» Дарвина, – чтобы концентрация компонентов была высокой. Первым такого рода аккумулированием могли быть липидные мешочки. Тогда возникает вопрос: был ли это ранний вирус или ранняя клетка? Первоначально не было резкого разграничения между вирусами и клетками, и, скорее всего, они по совокупности образуют континуум. Недавно обнаруженные гигантские вирусы разрушили все ограничения, поскольку они почти бактерии и у них даже есть признак, который, как считается, бывает только у бактерий: компоненты для синтеза белка. А способность синтезировать белок часто используется для определения жизни. Таким образом, эти «почти бактерии» – переходная форма между вирусами и бактериями, между живым и неживым. Обнаружение гигантских вирусов коренным образом изменило наше представление о вирусах и способствовало тому, что мы стали считать вирусы более «живыми», чем представлялось ранее. Минималистичное определение вирусов предусматривает и их неспособность синтезировать белок, что является одним из признаков жизни. Однако гигантские вирусы все-таки «почти» могут синтезировать белок! Вирусы обнаружены везде, где есть жизнь. Вирусы способны захватывать и доставлять гены, они могут мутировать, рекомбинировать, вставлять, удалять и смешивать гены. Их репликация ненадежна и поэтому представляет нечто новое для вируса и клетки-хозяина. Онкогенные вирусы способны извлекать гены из клетки и заставлять их мутировать в... [стр. 17 ⇒]

Яблоку нужна земля, чтобы стать яблоневым деревом, дающим новые яблоки. Яблоки ведь живые? А как же вирусы? Может ли в данном случае чем-то помочь Чарлз Дарвин? Он считал, что жизнь, возможно, зародилась в «маленьком теплом пруду», и предполагал, что сначала все было просто, на этом его предположения закончились. Вирусу нужен пруд или хотя бы пробирка – среда с питательными веществами для репликации и производства потомства. Вирусы – просто организованные организмы. Поэтому они более «живые», чем камни, а вот камни действительно неживые. Как это ни странно, некоторые вирусы способны к агрегации и образованию симметричных квазикристаллических структур, которые чрезвычайно стабильны, резистентны к теплу и в этом смысле действительно напоминают камни. У кристаллов неправильной формы может даже сохраняться неправильное сворачивание, что почти напоминает репликацию. Так же могут себя вести, например, некоторые белковые агрегаты в тканях головного мозга – например, прионы. Может быть, у них есть нечто схожее с вирусами? Предполагаю, что да, и мы увидим это далее. Бактерии принято считать живыми микроорганизмами. Они обладают способностью к делению и, таким образом, к самовоспроизведению, а, что самое главное, они синтезируют белок. Синтез белка считается важным пограничным маркером, разделяющим живое и неживое. Бактериям тоже нужны поступающие извне питательные вещества, то есть они не полностью независимые микроорганизмы. Кроме того, они вовсе не так просты! Не существует биологического «вечного двигателя» – механизма, способного работать без помощи энергии. Но источником энергии необязательно является клетка. При отсутствии солнечных лучей это может быть энергия химических реакций, как в случае с «черными курильщиками», находящимися на дне океана. К великому удивлению, недавно обнаруженные гигантские вирусы содержат компоненты, необходимые для синтеза белка. Они очень похожи на живые бактерии, являясь «квазибактериями». Соответственно гигантские вирусы также называют мимивирусами, поскольку они, похоже, мимикрируют под бактерии. Будучи почти бактериями, эти гигантские вирусы являются хозяевами для более мелких вирусов, которые реплицируются внутри них. Все это вызвало чрезвычайно сильное раздражение у классических вирусологов, поскольку гигантские вирусы никак не вписываются в устоявшиеся представления о вирусах и их определения. Открытие этих вирусов в 2013 г. было прокомментировано в журнале Nature с точки зрения места вирусов в процессе возникновения жизни. В этом материале указывалось, что гигантские вирусы нужно поместить в основание древа жизни – вот на что надеялись ученые, открывшие этот вирус! В самом начале не было клеток и мимивирусов – и те, и другие слишком большие по сравнению с вирусами, поэтому они не могли быть у истоков жизни. Вероятно, ранние вирусы не нуждались в клетках. Это довольно смелое заявление и единственное, что не очень вписывается в мое утверждение «Сначала были вирусы». Современные вирусы нуждаются в клетках, но, возможно, это результат длительной эволюции. На самом деле существуют вироиды, «голые молекулы РНК», способные к репликации и эволюции, которые, возможно, изначально не зависели от клеток, как сейчас. Они могут делать все это как в пробирке Джойса – без клеток. Их можно было бы назвать «голые вирусы». Вирусы – изобретатели и поставщики генетических инноваций. Они формируют наши геномы. Я так считаю и готова повторить это много раз, это мое кредо, мое «ceterum censeo» 5. Вирусы действительно внесли свой вклад в образование клеток. Это очевидный факт, а не предположение. Современные вирусы – паразиты, они зависят от клеток. Вирус-паразит может передать свои функции хозяину и покинуть его с меньшим количеством генов, чем если бы он был сам по себе или ему приходилось бы выживать вне клетки-хозяина. Все выявляемые в настоящее время вирусы – паразиты, зависящие от клеток. Эволюция идет не 5... [стр. 23 ⇒]

Сложные структуры могут становиться проще, могут терять гены, делегировать свои функции и становиться специализированными. В зависимости от условий окружающей среды способности могут быть приобретены или утрачены. Примером тому служат митохондрии. Подождите, вот дойдем до последней главы этой книги! Как же вирусы взаимодействуют со своей клеткой-хозяином? Существуют клетки-хозяева, не имеющие ядра, из которых состоят бактерии и археи, – это прокариоты, и клетки, содержащие ядра, – это эукариоты. Из них состоят насекомые, черви, растения, млекопитающие и т. д. Все эти организмы содержат вирусы, а бактериальные вирусы носят также специальное название «бактериофаги» или просто «фаги». Тем не менее нет необходимости разделять вирусы и фаги. В клетке-хозяине они ведут себя одинаково. Их «жизненные циклы» или циклы репликации описываются следующими характеристиками: вирус проникает в клетку в целях ее инфицирования, после чего он остается в клетке, интегрируется, реплицируется и/или разрушает ее. Иметь способность сохраняться в клетке – причем клетка-хозяин часто не замечает присутствия вируса – значит обеспечить себе постоянное или, другими словами, долговременное пребывание в клетке. Герпесвирусы прячутся в нейронах, где они могут оставаться годами. Многие вирусы растений остаются в клетках навсегда, так как никогда не приобретают оболочку, никогда не становятся активными (или вирулентными) и всегда размножаются вместе с растительной клеткой. Фаги сохраняются в клетках в форме интегрированных фагов, что называется лизогенным состоянием. Помимо этого, ретровирусы и некоторые другие ДНК-вирусы интегрируются в ДНК генома клетки-хозяина. В этом случае клетка-хозяин приобретает несколько дополнительных генов. Вместе с тем такая интеграция может обусловить генотоксический или мутагенный эффект и причинять вред клетке. Фаги и вирусы способны разрушить клетку-хозяина, высвобождая свое многотысячное «потомство», причем часто это бывает реакцией на стресс, примерно так, как реагирует на стресс наш организм: мы не находим себе места и теряем аппетит! Такой же эффект может вызвать прием у стоматолога. В таких ситуациях герпесвирусы выползают из своего убежища и оказываются у нас на губах, образуя очаг поражения. Запомните общее правило: вторжение захватчиков может привести к объединению всех защитных сил или к поражению, вызванному чрезмерным стрессом, что относится и к человеческому обществу! Уничтожат ли вирусы своих хозяев и может ли это привести к уничтожению человечества? Нет, все это небылицы, этого просто не может быть. Это нонсенс с точки зрения эволюции, поскольку в этом случае вирусы уничтожат саму основу своего существования или выживания и сами погибнут. Если большинство клеток исчезнет, их останется так мало, что вирусы просто не найдут последнюю клетку. Поэтому при недостатке клеток-хозяев вирусы приспосабливаются к новым типам хозяев. Речь идет о таком опасном явлении, как зооноз, вследствие которого человеческий организм инфицируется совершенно новыми для себя вирусами животных. До того, как исчезнут все клетки-хозяева, вирусы найдут им замену. Происходит переход от паразитической модели поведения к сосуществованию, что зачастую взаимовыгодно, то есть пользу от такого взаимодействия получает как вирус, так и хозяин. Если вирус поддерживает выживание клетки-хозяина, он повышает шансы на собственное выживание и выживание своего потомства. В процессе коэволюции вирус может стать менее агрессивным и менее вирулентным. Это происходит двумя путями: либо у хозяина повышается резистентность к вирусу, либо вирус перестает быть патогенным. Последнее достигается путем эндогенизации последовательности генов вируса в геноме хозяина. В нашем геноме очень много таких последовательностей – целое «кладбище» бывших вирусов. На вопросе эндогенизации мы остановимся ниже. В процессе эволюции многие вирусы стали менее патогенными по отношению к своим «хозяевам». Например, вирус Эбола перешел к человеку от летучих мышей (это его... [стр. 24 ⇒]

Еще один вирус, до сих пор приводящий в ужас человечество, — вирус гриппа, «испанка», именуемый H1N1. Примерно 100 лет назад во время Первой мировой войны этот грипп унес от 20 до 100 млн человеческих жизней. Вирус выделили совсем недавно, в 2005 г., из останков солдат и североамериканской эскимоски, похороненной в вечной мерзлоте на Аляске. В лабораторных условиях вирус реактивировали. Восстановленный вирус оказался в состоянии инфицировать животных. Работа с этим вирусом требовала использования высокотехнологичного оборудования и, помимо прочего, была чрезвычайно опасным занятием. По этому поводу СМИ совершенно оправданно выразили недовольство. Ученых интересовало, почему именно этот вирус является столь смертоносным, особенно для молодых мужчин. Было выделено всего несколько специфических последовательностей генов вируса, которые, возможно, повышают аффинность (узнаваемость) вируса к клеткам легких и усиливают патогенность данного вируса. (Прочие изменения нуклеотидовобнаружены в полимеразе, нуклеопротеине или гемагглютинине, поэтому до сих пор ученые не пришли к единому мнению по вопросу о том, какие именно изменения обусловливают смертоносный характер этого вируса.) Важнейшими факторами, обусловившими возникновение пандемии, были следующие: война, голод, влажность, холода, ранения, антисанитарные условия, перенаселенность палаток и условия полевых госпиталей — все эти обстоятельства, безусловно, нужно рассматривать в связи с характером последовательности вируса. В силу всех этих факторов и произошла катастрофа. За все это нам нужно винить самих себя. В 2009 г. в Мексике начался свиной грипп, возбудителем которого стал вирус гриппа H1N1, но отличавшийся от вируса «испанки». Всемирная организация здравоохранения (ВОЗ) объявила об эпидемии, посчитав, что вспышка представляет угрозу для населения всего мира. Но в расчеты вкралась ошибка. Данные по соотношению числа летальных случаев относительно гипотетически инфицированных людей оказались ошибочными, поскольку никто не знал реальной скорости распространения инфекции, например в Мексике, где люди не обращаются к врачу из-за какого-то гриппа. Показатель смертности составил 5%, а не 50% от численности инфицированного населения, не больше, чем при обычной сезонной эпидемии, поэтому тревога оказалась ложной. Однако это действительно была пандемия, поскольку вирус распространился в очень большом количестве стран. Меры по обеспечению безопасности приняли быстро, и началось производство вакцины. Но для Запада оказалось слишком поздно, волна инфекции уже накрыла его. Население Южного полушария не хотело вакцинироваться даже бесплатно. Никто не воспринял свиной грипп всерьез. Я заболела этим гриппом в Китае, возможно, заразившись в каком-то интернет-кафе в Шанхае. По возвращении домой я чувствовала себя плохо, отменила поездку из Берлина в Цюрих, опасаясь, что могу кого-нибудь заразить, а потом в СМИ появилась бы статья о том, как профессор вирусологии распространяла вирус. У меня действительно был свиной грипп, и этот диагноз был подтвержден в моем диагностическом центре. Вирусы — возбудители птичьего гриппа стали опасными в силу манипуляций, проделанных учеными в лабораторных условиях. На основе чисто птичьего вируса был получен вирус, заразный для человека. В последовательность генов вируса дважды внесли мутации в двух независимых лабораториях, в США и Голландии. Почему же ученые проводили столь рискованные эксперименты? Этот вопрос возник только после того, как наивные ученые опубликовали результаты своих исследований, и только тогда организации, финансирующие эти изыскания, забили тревогу. На эти исследования и публикацию их результатов был наложен обязательный шестимесячный перерыв, мораторий, который продлился дольше, чем было предусмотрено, после чего запрет на публикацию был смягчен: ввели запрет на публикацию детальной информации, чтобы невозможно было повторить эксперимент и превратить относительно безвредный вирус в опасный. Однажды мораторий уже вводили в форме ограничений на использование рекомбинантных ДНК-технологий, а именно на создание новых генов путем комбинирования генных фрагментов. Решение о введении моратория было принято в 1975 г. на Асиломарской конференции. Кроме того, были установлены ограничения на применение генной терапии с использованием вирусов для лечения рака. И в настоящее время запрещено использовать реплицирующиеся вирусы в терапевтических целях, чтобы репликация вирусов не вызвала инфицирование половых клеток пациента, что, в свою очередь, может обусловить передачу вируса по наследству. Это... [стр. 26 ⇒]

Вирус, полный генов осы, — это точно вирус? Мой любимый вирус — поли-ДНК-вирус (PDV), вирус насекомых, поскольку, похоже, в нем нет ничего «правильного». Он никак не вписывается в известные схемы классификации вирусов. Во-первых, у него нет генома. Он не пустой, но находящиеся в нем ДНК — ДНК хозяина, и таких ДНК много — 30 плазмидных кольцевых ДНК. Поэтому этот вирус становится исключением, вирусом с большим количеством инородных ДНК, что и дало ему название «поли-ДНК-вирус». Кроме того, за счет собственной репликации он не инфицирует клетки, а скорее помогает хозяину продуцировать потомство, но может действовать и без хозяина. Это напоминает совместную работу или субподряд, что хорошо для потомства хозяина и в конечном счете дает преимущество самому вирусу. Безусловно, у вируса есть своя генетическая информация, но она находится не в его частицах, а передается в геном хозяина, можно сказать, путем «аутсорсинга». Вирусная ДНК интегрируется в геном хозяина в осе-матке, обеспечивая производство новых вирусных частиц в ее яичниках. Оса-матка секретирует яйца, а вместе с ними и вирус, и вводит их в полость тела гусеницы. Затем вирусы высвобождают 30 плазмидных ДНК с генетической информацией, кодирующей токсины, которые они продуцируют, и уничтожают гусениц. В результате образуется заранее переваренная пища для молодых ос. Это идеальная смена ролей: вирусы теперь с генами хозяина, а хозяин — с вирусными генами. Возникает вопрос: какое определение можно дать вирусу, который отдает все свои гены хозяину, а потом забирает их? Как таким вирусам вообще удалось получить потомство? Ответ прост: все рождающиеся осы имеют в геномах вирусные гены, унаследованные от осы-матки, и однажды этот цикл повторится. Таков механизм репликации PDV. Это «вертикальная» репродукция от поколения к поколению, аналогичная репродукции эндогенных вирусов. Однако это не настоящие эндогенные вирусы, потому что реальные экзогенные частицы покидают своего хозяина. Я хотела бы включить странные вирусы, в частности PDV, в общее определение вирусов как носителей генов для передачи генов. Такие вирусы, как PDV, совсем не редкость, их десятки тысяч. Похоже, это взаимовыгодно, чего не скажешь о гусеницах, которые ведут себя довольно странно. Вирусы и молодые осы смертельно опасны для них, но они защищают их коконы от внешних захватчиков. Таким образом, они помогают своим будущим убийцам. Иногда такое поведение называется материнским. Возможно, гусеница может отложить свою гибель. В 2015 г. было доказано, что захват гусеницами генов является защитой от других вирусов. Таким образом, принцип мутуализма и понятие «выгоды» в определенной степени применимы и к гусенице. Столь необычное взаимодействие хозяина и вируса, когда вирус наполовину эндогенный и наполовину экзогенный, может иметь очень древние эволюционные корни. Даже при более коротком жизненном цикле вирус никогда не смог бы покинуть клетку и стать полностью эндогенным, а может быть, все было наоборот — «запертые» вирусы стали мобильными? Жизненные циклы, подобные тем, что наблюдаются при взаимодействии ос и вирусов, по-видимому, существуют и у гусениц, и у бабочек монархов, и у мотыльков. [стр. 92 ⇒]

Особенно это относится к бактериям, которые превратились во внутриклеточных паразитов и получают поддержку от инфицированной клетки-хозяина. Самая мелкая бактерия — Hodgkinia cicadicola, имеющая 145 000 пар оснований и кодирующая 169 белков. Она прячется в насекомых и защищается там от внешнего воздействия. Это вырожденные и специфические паразиты, которые делегируют свои функции клетке-хозяину. Митохондрии являются бывшими бактериями, и с хлоропластами в растительных клетках такая же история. Оба эти симбиотических организма высокоспециализированы и зависят от клетки-хозяина. По размеру они совершенно не соизмеримы с гигантскими вирусами. Амебные вирусы захватывают новые гены путем горизонтального переноса генов из внутренней части амебы, где есть и другие бактерии и вирусы, которые амеба обычно поглощает и переваривает в качестве пищи. Существует свободно плавающая ДНК, которую гигантские вирусы включают в свой состав путем горизонтального переноса генов. А ДНК амебы они пренебрегают, и происходит это, вероятно, потому, что ДНК амебы локализуется внутри ядра и ее трудно «достать» из цитоплазмы. В общем геноме вирусов амебы 56% генов получено от эукариотов, 29% — от бактерий, 1% — от архей, 5% — от других вирусов и еще 10% — от неизвестных микроорганизмов. Подобная генетическая сложность указывает на то, что гигантские вирусы взаимодействуют с окружающей средой и претерпевают серьезные генные изменения. Один из гигантских вирусов, Marseillevirus, содержит химерный РНК–ДНК-геном, который сам по себе очень необычен. Являются ли некоторые РНК остаточным продуктом эволюции к ДНК? Эти вирусы никак не вписываются в представление о вирусах. Есть и еще один сюрприз. Гигантские вирусы содержат гены, необходимые для синтеза белков. Синтез белков считается самой важной привилегией живых клеток и совершенно недоступен для вирусов. Поэтому открытие гигантских вирусов, содержащих компоненты, необходимые для синтеза белка, полностью меняет наши сформировавшиеся ранее представления о мире вирусов. Эти вирусы не обладают всем комплектом компонентов для синтеза белков, и в этом смысле они дефектны, но даже если и так! Не остановились ли они на середине эволюционного пути превращения в живые микроорганизмы, например бактерии? У некоторых мимивирусов есть странные «короны из волосков», с помощью которых они контактируют с клеткой-хозяином. Это настоящие волокна, состоящие из коллагена, в силу чего гигантские вирусы кажутся еще крупнее. Столь большие «удлинения» заставляют задуматься об их предназначении — для захвата или для защиты? Мимивирусы имеют икосаэдральную ядерную структуру, при этом длина ядра в поперечнике составляет 500 нм, а толщина волокна примерно 140 нм. Коллагеновые «волоски» напоминают нашу соединительную ткань (а не волосы). У вируса почти всегда есть молекулы поверхностного слоя, используемые для распознавания клетки-хозяина, связывания с ними и проникновения в такие специализированные клетки. Похоже, что при помощи этих «волосков» гигантские вирусы раздражают клетку-хозяина, чтобы проникнуть в нее. Видимо, на ранних этапах эволюции не существовало сложных рецепторов. Прикосновение к клетке-хозяину или ее раздражение — простой вариант по сравнению с высокоспециализированными стыковочными сайтами, с помощью которых ВИЧ обычно проникает в лимфоциты, имитируя лиганды рецепторов клетки-хозяина. Гигантские вирусы, похоже, ограничиваются лишь простым механическим раздражением клетки-хозяина. В 2014 г. во влажных лесах Амазонки ученые открыли новый вирус (как будто это событие было специально приурочено к чемпионату мира по футболу). Он называется Samba и тоже имеет длинные, торчащие во все стороны «волоски». Похоже, что в скором времени все это множество новых вирусов перестанет вызывать удивление. Клетки-хозяева, а именно клетки амебы, видимо, древние. Они поглощают другие вирусы, в частности вирусы герпеса, «одним глотком» и переваривают их. Чтобы их не съели, гигантские вирусы обманывают амебы, поскольку их можно захватить без того, чтобы съесть. Внутри амеб они перемещаются в вакуолях и сливаются с вакуолями мембран — это безопасное место, где гигантские вирусы могут даже реплицироваться. Репликация осуществляется в отдельной полости, на отдельной фабрике, не зависящей от клеточного ядра и предназначенной быть «фабрикой по производству вируса». По мере увеличения числа произведенных вирусов размер такой «фабрики» растет. Затем вирусное потомство секретируется вне пространства «фабрики». В лабораторных условиях был проведен эксперимент по переносу гигантских вирусов из одного поколения амеб в другое в общей сложности 150 раз. После всех переносов гигантские... [стр. 98 ⇒]

Sputnik — вирусы вирусов У гигантских вирусов есть еще одно удивительное свойство. Да, так и есть: это вирусы вирусов. Гигантские вирусы могут инфицироваться другими вирусами и обеспечивают такие же условия для их репликации, как реальный хозяин. Это исключительное свойство гигантских вирусов. Обычно вирусы инфицируют клетки, однако эти гигантские вирусы могут служить клетками для других вирусов, что, в свою очередь, делает гигантские вирусы более похожими на клетки. Гигантские вирусы — это «почти клетки». Вирусы вирусов называют «вирофаги» по аналогии с бактериофагами, вирусами бактерий. Их называют Sputnik («Спутник») или Ма-вирофагами. Последнее определение — это сокращение от вирусов Maverick, разрушительных компьютерных вирусов. Sputnik и Ма-вирофаги в плане своей репликации зависят от гигантских вирусов. У них примерно 20 генов и около 20 000 пар оснований и только три гена, полученных от гигантского вируса. Это достаточно мелкий, но мощный вирус, поскольку он уничтожает своего вирусного хозяина. Sputnik захватывает «фабрику по производству вирусов», где происходит размножение гигантских вирусов, реплицирует собственное потомство за счет гигантского вируса и даже забирает белки хозяина для собственного воспроизводства. В этом процессе погибают в 20 раз более крупные мимивирусы. Так вот, в данном случае один вирус является хозяином другого вируса, который становится не вирусом-хелпером (помощником), а, скорее, похож на губительный компьютерный вирус. Это довольно необычно. Ма-вирофаги инфицируют еще один вид гигантских вирусов, который называется Cafeteria roenbergensis (CroV). Надо же, какое название! Вирус назван не в честь открывшего его ученого, а носит имя кафе в датском городе Ренбьерг. Информацию по этому вирусу получить было довольно сложно, пока я не позвонила специалисту по вирофагам Маттиасу Фишеру из Гейдельберга. Cro — одноклеточный жгутиковый организм (микрофлагеллат), эукариот, питающийся бактериями, но непохожий на амеб или водоросли. Он широко распространен в Мировом океане и может существовать на больших глубинах. Его гигантский вирус CroV, вызывает разрушение жгутиков, регулируя таким образом плотность их популяции. CroV — вирус, носящий название кафе, в настоящее время исследуется Матиасом Фишером, бывшим студентом Кёртиса Саттла. Этот вирус состоит из 730 000 пар оснований и 544 генов, полученных от бактерий, эукариотов и ДНК фагов. Крейг Вентер собрал образцы этого вируса, содержащие вирофаг Ма (и вовсе не рядом с кафе). Завершив секвенирование генома человека, Вентер совместил исследовательскую деятельность с увлечением мореплаванием. Когда его судно находилось в Саргассовом море[14] (Атлантический океан), Вентер собрал образцы воды и передал их другим исследователям для проведения секвенирования и анализа. Сейчас обработкой этих данных занимается несколько специалистов по биоинформатике. Нам открывается мир геномов, в котором большинство генов и путей метаболизма неизвестны. Жизнь на дне океана очень отличается от нашей жизни. И это удивительно. Ма-вирофаг, так же другой вирофаг, Sputnik, реплицируется на «фабрике по производству вирусов» внутри амебы, при этом амеба его не пожирает. Только четыре гена Ма-вирофага из имеющихся у него 20 идентичны генам Sputnik. Ма-вирофаг является носителем даже ретровирусных генов, в частности интегразы вируса. (Ретровирусы влияют на все! Ма ведет себя и как ретровирус, поскольку внедряет свою ДНК в ДНК жгутика, гарантируя таким образом наследование этой генетической информации.) В то же время Ма использует вирус CroV, получивший имя по названию кафе, в качестве хозяина для репликации, а затем уничтожает его, как это делают фаги. Итак, Ма — это ретровирус для одного хозяина и фаг для другого, то есть... [стр. 99 ⇒]

Вирусы размера XXL — пандовирусы До того, как закончить главу о «гигантских вирусах», ее нужно дополнить. С настоящего времени следует добавлять даты открытия — настолько быстро выявляются новые вирусы. После 20 июля 2013 г. появились сообщения об открытии двух новых вирусов. До того самым крупным гигантским вирусом считался амебный вирус Megavirus chilensis с 1,25 млн пар оснований. Назовем его XL. Сейчас обнаружены два новых, еще более крупных вируса, которые почти в два раза больше XL-вируса — это супергигантские XXL-вирусы. Их ДНК состоит из 1,90–2,47 млн пар оснований, что соответствует 1900–2500 генов или генных продуктов. Жан-Мишель Клавери из Марселя выделил новые вирусы: первый — пандовирус P. salinus, самый большой из всех известных гигантских вирусов, обнаруженный в осадочных породах на побережье Чили, а второй — P. dulcis, обнаруженный в австралийском пруду. Клавери пригласили читать лекции в австралийский университет, и, проходя мимо пруда, находящегося на территории кампуса, он наполнил стеклянную бутылку водой и грязью из этого пруда. А придя домой, изолировал P. dulcis!Одновременное открытие двух гигантских вирусов в столь отдаленных друг от друга регионах не может быть счастливой случайностью. У этих вирусов должно быть нечто общее. Недавно открытые вирусы внешне напоминают греческую амфору или — если использовать менее поэтичное сравнение — у них не икосаэдральная, а яйцевидная форма. И все же не форма определила их название, а, скорее, оптимизм ученого, который их обнаружил и который полагал, что будет открыто больше таких вирусов, согласно греческой легенде о ящике Пандоры — ящике, полном вирусов. Весьма оптимистичное предположение. Возможно, даже появятся огромные XXXL-вирусы. Как знать! Вероятно, их будет трудно отличить от бактерий, и все равно их могут не заметить! Эти два вируса генетически совершенно не родственны ни между собой, ни другим гигантским вирусам. Они реплицируются в амебе, как и другие гигантские вирусы, однако у них нет признаков энергетически предпочтительной икосаэдральной формы, у них нет мембраны, нет «волосков»; скорее, это «голые» частицы. Из 2370 генов P. salinus только 101 ген напоминает гены эукариотов, 43 — гены бактерий и 42 — гены других вирусов. Это практически невероятно, но 93% их генов неизвестны. И все же формы этих двух вирусов связаны между собой, они схожи — от Чили до Австралии. Их яйцевидная форма состоит из нескольких слоев. Кроме того, у них необычная ДНК, состоящая из линейных двойных спиралей с повторяющимися концами. Так же, как и другие гигантские вирусы, они обладают квазиклеточными свойствами: генами, необходимыми для репликации ДНК и синтеза белков, которые обычно поставляются клеткой-хозяином и отсутствуют у вирусов. Исследователи Дидье Рауль и Жан-Мишель Клавери высказали предположение о существовании нового домена жизни, четвертого царства в дополнение к уже существующим трем — бактерии, археи (и те и другие относятся к прокариотам), эукариоты. К ним можно добавить новые гигавирусы (или, если коротко, «гирусы»). Это похоже на хороший маркетинговый ход, направленный на повышение значимости открытия. Исследователи пошли еще дальше и поместили гирусы ниже микроорганизмов, представляющих третье царство, а именно в основание древа жизни в качестве общего предка. По оценкам ученых, возраст таких вирусов составляет 2,7 млрд лет. [стр. 100 ⇒]

Вирусы расположены у истоков корней древа жизни? В настоящее время все больше людей так считает. Но я отдаю предпочтение вироидам, поскольку гигантские вирусы слишком велики, чтобы служить началом жизни! Гигантские вирусы могут быть не полностью сформированными бактериями, которые на пути превращения в настоящие бактерии остановились где-то на боковой ветви, и процесс их развития остался незавершенным; или, наоборот, они могут быть выродившимися бактериями, потерявшими часть своих генов и независимость. В любом случае гигантские вирусы — это переходная форма между вирусами и клетками. Граница между ними не слишком четкая, но неразрывная. Как происходила эволюция? Стали ли мелкие вирусы более крупными и прогрессируют ли они, чтобы стать гигантскими вирусами и двигаться вперед по пути превращения в клетку? Это вполне коррелируется с усложнением структуры и увеличением размера. Или, вероятнее всего, обратное — действительно ли потеря генов и регрессия приводят к образованию вирусов? Полагаю, первое более вероятно, но об этом мы поговорим позже. Я написала научную статью о вирусах как двигателях эволюции, так как они являются поставщиками генов, изобретателями, которые участвовали в образовании жизни на ее ранних этапах, содействуя формированию всех геномов и даже антивирусной защиты. Эту статью я попыталась опубликовать в рецензируемых международных журналах. В результате появилось необычно большое количество анонимных рецензентов. Один редактор отправил мою статью семи рецензентам. Ничего подобного в моей практике ранее не было. Их мнения варьировались от весьма оптимистичной оценки («это новый взгляд на проблему», «неожиданная концепция», «инновационный подход», «нестандартный подход») до высказываний, в которых ставится под сомнение моя компетентность и знание основ вирусологии. Можно прочесть статью «Что современные вирусы могут рассказать нам об эволюции?» и короткую версию «Являются ли вирусы нашими древнейшими предками?». До меня на эту тему писали другие исследователи, в частности Луис Вильярреаль (он посвятил этой тематике целую книгу), а совсем недавно Евгений Кунин, биоматематик из Национального института здравоохранения США (NIH), и Карл Циммер, журналист, написавший небольшую брошюру под названием «Млекопитающие, “сделанные” вирусами». Говоря о древнем мире вирусов, или виросфере, Кунин использовал сокращение LUCAV, подразумевающее понятие LUCA[15] — последний универсальный общий предок, — и добавил букву V, означающую «вирус». LUCA должен иметь очень сложную структуру, поскольку для обеспечения жизнедеятельности первой «самой мелкой» искусственной клетки, полученной Крейгом Вентером, требуется 473 гена. Однако жизнь должна была бы начаться с более простых микроорганизмов. Инновационные вирусы перепробовали много вариантов, начиная не с одного, а с комбинации вирусов или «квазивидов» — из вирусов в «облаке», популяции, состоящей из большого количества различных последовательностей. Они вполне могли бы послужить начальной формой жизни. Затем горизонтальный перенос генов способствовал формированию более сложных структур. Только вот у простого пре- или провируса, вируса Ur, никогда не могло быть такого шанса. Моя страсть к гигантским вирусам, должно быть, оказалась заразной, поскольку меня пригласили на радио, чтобы я рассказала, чем обусловлен новый виток интереса к гигантским вирусам. Имелся в виду предсказанный XXXL-вирус, называемый питовирусом (Pithovirus), сообщение об открытии которого появилось 3 марта 2014 г. Этот вирус тоже был открыт Жан-Мишелем Клавери. Питос — греческое слово, и, как указали авторы открытия, в древности оно обозначало «сосуд». В отличие от пандовирусов, питовирусы не похожи на амфоры, но имеют, как и мимивирусы, икосаэдральную структуру, состоящую из кольцевых ДНК и оболочки с удивительными «волосами». (Питовирусы в три раза крупнее двух пандовирусов, тем не менее они содержат только пятую часть генов пандовирусов, «всего лишь» 596. Данный вирус является своего рода комбинацией мимивирусов и пандовирусов. Он также реплицируется в амебах, но в данном случае внутри ядер.) Это просто еще один вариант вируса. Питовирусы обладают свойствами живых бактериальных клеток, могут транскрибировать ДНК в РНК и содержат ряд генов для синтеза белка. Так вирусы они или бактерии? Ответ на этот вопрос хотели бы знать не только рецензенты, но и читатели. Это важный вопрос о грани между вирусами и бактериальными клетками. Только бактерии способны к делению и репликации (они сами себя дуплицируют), в то время как вирусы не способны делиться на две части и расти. Типичным свойством вируса является его жизненный цикл: вирусы реплицируются каждые 20 часов, после чего амеба разрывается, одномоментно высвобождая тысячи вирусов. Это... [стр. 101 ⇒]

(Лично я считаю, что в начале эволюции вирусы представляли собой вироиды и им не нужна была клетка, а был необходим источник энергии и, вполне возможно, что изначально это была тепловая или химическая энергия — и тогда они могли удваивать свою РНК, находясь вблизи «черных курильщиков» на дне океана, как уже неоднократно указывалось в этой книге!) У питовирусов есть одно специфическое свойство. Эти гигантские вирусы были обнаружены в сибирской вечной мерзлоте и поэтому называются Pithovirus sibericum. Их обнаружили в полостях отобранных проб льда. При помощи радиоуглеродного анализа удалось приблизительно определить возраст вирусов — 30 000 лет. В то время уже существовали неандертальцы. Самое невероятное то, что после столь длительного хранения в замороженном состоянии эти вирусы все еще биологически активны, а это значит, что они могут инфицировать амебы в лабораторных условиях и способны к репликации. Все вирусологи хранят вирусы в морозильном аппарате для низкотемпературного замораживания до 30 лет. Это стандартный способ хранения вирусов, при котором они сохраняют инфицирующую способность, особенно это касается ДНК-вирусов. Однако трудно себе представить, что может произойти с вирусом за 30 000 лет пребывания в вечной мерзлоте. Возможно, у журнала Science также были некоторые сомнения и члены редколлегии не верили в сохранность вируса при столь длительном нахождении в вечной мерзлоте, так как они не приняли в печать статью о питовирусах. Клавери и его коллеги бурили лед по горизонтали, а не в глубину. Действительно ли полученный распил представляет собой 30 000-летнюю вечную мерзлоту? С этими вирусами ничего не должно было случиться в лаборатории — ни репараций, ни мутаций. То же самое было в случае, когда недавно изолировали и реактивировали вирус гриппа, обнаруженный в останках солдата, погибшего во время Первой мировой войны, в течение 100 лет находившихся в условиях вечной мерзлоты. Однако геном вируса гриппа состоит из РНК, которые более лабильны, чем ДНК. Изоляция питовирусов вызвала ряд вопросов, один из которых: что еще может так долго находиться во льдах? Авторы высказываются достаточно осторожно и определяют свои вирусы как «индикаторы безопасности» для других, потенциально более опасных вирусов — это своего рода «индекс ископаемости». До сих пор не было никаких признаков, что какая-нибудь болезнь вызвана гигантскими вирусами и они считаются безопасными. Тем не менее, к большому удивлению читателей, авторы статьи отметили поксвирусы. Эти вирусы считались вымершими, но они имеют некоторое сходство с самыми новыми гигантскими вирусами. Поксвирусы ранее не включали в семейство гигантских вирусов, хотя, принимая во внимание крупные линейные ДНК-геномы, их икосаэдральную структуру и способ репликации внутри клеточных ядер, они вполне могут принадлежать к этой категории. Могли ли они находиться в состоянии спячки в сибирской мерзлоте 30 000 лет и можно ли их реактивировать? Существуют ли другие подобные вирусы? Возможно, есть вирусы, о которых мы либо уже не знаем, либо еще не знаем? Это было бы страшно. (Некоторые другие редкие вирусы, в частности Asco, Irido, Phycodna или Asfoviruse, не слишком далеки от поксвирусов или гигавирусов.) Самый крупный поксвирус — canary poxvirus (вирус канарейки), он активно используется в генной терапии в качестве вакцинного штамма. Он содержит около 300 000 пар оснований и примерно 300 белков. Открытие трех столь разных гигантских вирусов с интервалом в несколько месяцев в трех разных весьма удаленных друг от друга местах — в Австралии, Калифорнии и Сибири — не может быть чистой случайностью. Эти вирусы должны быть гораздо более широко распространены и вполне обычны. Итак, началась новая эра исследования вирусов. Охота за вирусами в самом разгаре. Осенью 2015 г. вследствие глобального потепления был получен изолят еще одного нового 30 000-летнего вируса, Mollivirus sibericum, у которого примерно 500 генов, и эта история открытий продолжится. [стр. 102 ⇒]

У человека лизис клеток обычно не наблюдается.) В случае гибели клетки гибнет и эндогенный вирус. Кроме того, если со временем эндогенные вирусы становятся бесполезными, клетки млекопитающих оказывают им противодействие и укорачивают их. Под понятием «бесполезные» подразумевается, что эти вирусы более не дают клетке никаких преимуществ и перестают защищать ее от внешних вирусов (см. далее). Как правило, оставшаяся часть вируса функциональна. Именно так в наших геномах накапливается большое число поврежденных вирусов, и этот процесс идет миллионы лет. Зачастую первыми теряются гены, кодирующие белки оболочки Env. Эти белки необходимы для упаковки и высвобождения интактных вирусных частиц. Будучи лишенными Env-покрытия, вирусы становятся «голыми» и не могут ни покинуть клетку, ни проникнуть в новую. В этом случае существует две возможности: Env может быть утрачен, но также может быть приобретен во время эволюции или заимствован из вспомогательного вируса. Кроме того, эндогенные вирусы можно инактивировать путем мутагенеза — этот механизм помогает избавиться от эндогенного вируса, по крайней мере функционально. «Стоп-кодоны» задействуются, когда вирусы перестают быть селективными, больше не способствуют защите клетки от других вирусов и начинают вырождаться. Эндогенные вирусы действительно дают клетке удивительные преимущества. Они способны защищать клетку-хозяина от суперинфекции, индуцируемой другими вирусами. Если клетка занята репликацией первого вируса, она блокирует проникновение в нее второго. Это явление называется «вирусная интерференция», что напоминает «интерферон», молекулу, обеспечивающую противовирусную защиту клеток млекопитающих, о чем мы поговорим в главе 9. Фаги тоже способны «занимать» клетки бактерии-хозяина, не допуская их инфицирования другими фагами. У бактерий это явление называется исключением гиперинфекции — предотвращением проникновения других фагов в клетки. Даже самые древние с точки зрения эволюции биоэлементы — вироиды, состоящие только из «голых» некодирующих нкРНК, уничтожают конкурентов, расщепляя (или разрезая) их. Этот механизм, называемый «сайленсинг», очень широко используется для иммунной защиты. Он основан на РНК, но вирусные белки тоже способны составить конкуренцию вирусам, захватывая рецепторы на поверхности клетки, которые зачастую являются якорями для внедрения вируса. Это один из многих, очень вариабельных, методов вирусной защиты. В общем, вирусы могут защищаться от других вирусов, обеспечивая клеткам противовирусную защиту, и обычно это называется иммунной системой клетки или организма. Все известные иммунные системы сформированы вирусами. И они созданы против вирусов! Вирусы похожи на противовирусную защиту! Это сильное заявление, но его можно доказать. Существует взаимная выгода и для вируса, и для клетки. Таким образом, вирусы, даже поврежденные, могут оказаться полезными для своего хозяина. Поэтому, вероятно, они не исчезли, а остаются внутри наших геномов миллиарды лет. Мировое научное сообщество испытало потрясение, когда выяснилось, что геном человека почти на 50% состоит из ретровирусов или вирусоподобных элементов. Зачастую они являются интактными вирусами и вырожденными ретровирусами. Это одни из самых впечатляющих результатов научных исследований XXI в., и они действительны для всех эукариотических организмов — млекопитающих, растений, насекомых, грибов и их спор и т.д. Другая неожиданность: даже интегрированные дефектные ретровирусные элементы способны «двигаться», но только внутри клетки, и у них нет шансов ее покинуть. И все же они передаются следующим поколениям в качестве клеточных генов и их трудно устранить. Между тем при оплодотворении яйцеклетки действует весьма удивительная модель защиты. Новый эмбрион начинается «с нуля». Эмбрион наследует родительские гены со всеми эндогенными ретровирусами. Однако они, как правило, инактивируются путем сайленсинга, функциональной инактивации. Это фантастически эффективный механизм, изобретенный природой, который имеет целью инактивировать остатки вирусных последовательностей родительских генов и гарантировать новое начало жизни для нового поколения. Механизм сайленсинга был открыт лишь недавно. Сайленсинг вирусов основан на химических модификациях ДНК или хроматина, белок-содержащего упаковочного материала для ДНК. Дизайнерские гены, используемые в генной терапии, также подвергаются сайленсингу в... [стр. 109 ⇒]

До чего же абсурдная мысль. Вирусы находятся везде. Вирусы растений «продвинулись» чуть дальше по пути эволюции, чем вироиды. Они более не являются некодирующими и безоболочечными, а продуцируют собственную оболочку на основе собственных генов. Вот что я называю прогрессом! Мы не представляем себе происхождение генетического кода. Может быть, его создали вирусы, перепробовав все что можно, и вот однажды «это просто случилось». Оболочка защищает вирус и повышает его подвижность. В то время как некодирующие нкРНК генетически «неграмотны», тобамовирус использует триплетный код для белков. Исследования растительных ВТМ-вирусов помогли ученым разобраться в триплетах, генетическом коде и соответствующих аминокислотах. ВТМ кодирует четыре архетипических белка, минимальный набор вирусов: один — для репликации, это РНК-зависимая РНК-полимераза — «матерь» всех репликационных ферментов. Еще один белок представляет собой оболочку, третий способствует перемещению вируса из одной клетки в другую, то есть является белком движения. Четвертый белок небольшой и «поддерживает» полимеразу. Следует помнить, что все это невероятно мощные вироиды могут выполнить без информации для белков — все функции спрятаны в некодирующих нкРНК. Концы тРНК образуют структуры типа «лист клевера» для защиты одноцепочечной РНК вируса табака ВТМ от нуклеаз. Для получения дополнительной информации вирус табачной мозаики использует трюк, известный многим вирусам. Их девиз: за счет ошибки из одного белка делаем два! Полимераза осуществляет «незаконное» удлинение небольшого белка, содержащего 136 аминокислот, до белка, содержащего 186 аминокислот. Трюк заключается в том, что вирусы «не обращают внимания» на стоп-сигнал. Игнорируется один нуклеотид, что приводит к смещению кода триплета, к так называемому сдвигу рамки считывания генетической информации. В этом случае возникает два белка с одинаковым началом, но с разными концами. Вирусы являются чемпионами мира по поиску таких минималистичных решений, а конкретно это еще и чрезвычайно полезно, и ВИЧ использует такой же принцип для удлинения структуры белка Gag, а сдвиг рамки считывания ведет к образованию белка Gag-Pol с «прочитанным» терминатором. Игнорирование стоп-кодона происходит в 1% случаев и приводит не только к изменению длины белка, но и к автоматическому сокращению количества более крупных белков в сто раз. Как элегантно! Еще одним специфическим свойством тобамовирусов является их генетическая стабильность. Эти вирусы содержат одноцепочечные РНК и должны быть чрезвычайно вариабельными. Но это не так, и их низкая вариабельность резко контрастирует с высокой вариабельностью РНК-содержащих вирусов, в частности вирусов гриппа и ВИЧ. Возможно, это объясняется тем, что вирусы растений не являются автономными и в большей степени зависят от растения как своего хозяина. Они адаптируются к клетке вместо того, чтобы модифицировать и покинуть ее, как это делает ВИЧ. Вирусы растений относятся к персистирующим вирусам, которые сохраняются в растениях, не образуя и не высвобождая вирусные частицы. Они очень резистентны и выдерживают температуры выше 90 °С, выживают в соке растений или на сухих поверхностях, например на земле, в воде и даже в облаках! Они также переносят ультрафиолетовое излучение, которое обычно инактивирует нуклеиновые кислоты, — но все это не относится к вирусу табачной мозаики. Даже если растение-хозяин погибает, ВТМ может существовать в долгоживущей форме много лет или десятилетий. Тобамовирусы «живут» на неживом! Затем на фоне улучшения условий они реактивируются и вновь обретают инфицирующие свойства. Высокая стабильность тобамовирусов является одним из признаков устойчивости очень старых с точки зрения эволюции вирусов во враждебном мире. Вероятно, они вместе с вироидами представляют самые древние вирусы. Продолжительная коэволюция вирусов и цветов сильно развела их с людьми, поскольку эти вирусы не могут функционировать в клетках млекопитающих и поэтому не являются возбудителями заболеваний у людей. Вирус табачной мозаики можно получать в граммовых количествах, он стал почти химическим соединением, в связи с чем подходит для исследований. Палочки ВТМ в настоящее время тестируются на предмет использования в качестве кабелей в наноэлектронике или контактов в батареях. Тобамовирусы в сельском хозяйстве считаются патогенами, и именно в таком качестве их изучают — пока в слишком ограниченных масштабах, принимая во внимание их вклад в... [стр. 147 ⇒]

Вирусы в соусе чили и моя яблоня Вирусы растений проходят через желудок и кишечник, после того как мы съедаем салат, и выводятся из организма с калом. Вирусы растений, в частности ВТМ, не являются настолько безоболочечными, как вироиды, но защищают свои РНК в сильных белковых палочках. Эти вирусы называются «настоящими» вирусами даже в самых консервативных учебниках по вирусологии. Мы съедаем с салатом примерно 109 вирусов на грамм — это огромное количество! Мы потребляем их, и с калом выводится такое же количество. И вот что самое удивительное: пройдя через кишечник и после экскреции они сохраняют свою инфицирующую способность. Они снова могут инфицировать другие растения. Означает ли это, что мы можем инфицировать растения? В принципе, да, не считая того, что растения разработали некоторые защитные меры: например, у деревьев есть толстая кора. Вирусам нужны насекомые, нематоды (черви), грибы или бактерии в качестве переносчиков (носителей), которые способны проникать в раны и изъязвления и даже попадать в растение через корни. В Калифорнии, так же как и на Филиппинах, вирусы растений выявлены в стуле человека, и это главным образом вирус, поражающий перец, а именно вирус слабой крапчатости перца (PMMV). Этот персистентный вирус остается в растениях и никогда не покидает их. Все ли люди так уж любят перец? Нет! Вполне достаточно использовать соус чили, поскольку даже в нем присутствует вирус PMMV в его инфицирующей форме. Вирусы с Филиппин присутствуют в заправке для салата, которую готовят в Калифорнии! Никто этого не ожидал. Вирусы безвредны независимо от того, где готовят этот соус, даже если в него добавлен перец чили, выращенный на Филиппинах. В любом случае вирус спокойно проходит через ЖКТ и при этом сохраняет способность инфицировать растения перца. Этот вирус специализируется на перцах и с трудом адаптируется. Для человека это хорошо! Геминивирусы — исключительные вирусы. Их название напоминает космические шаттлы «Джемини» — два соединенных друг с другом одинаковых космических корабля. Эти вирусы — своего рода сиамские близнецы, соединение двух икосаэдров, имеющих одну общую сторону. Каждый икосаэдр содержит молекулу одноцепочечной кольцевой ДНК. Цепочки не идентичны, но они дополняют друг друга. Если сложить две цепочки вместе, можно получить двойную цепочку. Цепочки, похоже, располагаются отдельно друг от друга, и у каждой из них есть свой «дом». Похоже, что когда-то процесс упаковки не увенчался успехом или же такое разделение вызвало проблемы. В результате возник геминивирус. Безусловно, он входит в мою коллекцию диковинных вирусов! Семейство бегомовирусов, вирусов золотистой мозаики фасоли (ВЗМФ), насчитывает примерно 200 видов. Они вовсе не редки, а наоборот, встречаются очень часто! Известны они потому, что вызывают проблемы. Эти вирусы поражают овощи — баклажаны, фасоль, хлопок и маниок съедобный. Филиппинский вирусолог выявил проблемы, которые этот вирус создает для фермеров. В Южной Африке геминивирусы представляют главный интерес для исследователей, поскольку поражают кукурузу. Геминивирусы уникальны. Во-первых, вирусы, содержащие одноцепочечные ДНК, редко встречаются в растениях. А потом, довольно любопытно, что они занимают промежуточное положение между вирусами с одноцепочечной ДНК и вирусами с двухцепочечной ДНК. Вирусы с двухцепочечной ДНК гораздо надежнее и стабильнее, но, как ни... [стр. 148 ⇒]

Рибозимы — это вироиды, а вироиды относятся к вирусам. Тогда сначала появились вирусы, или, если несколько смягчить, они существуют практически с момента зарождения жизни на Земле и по сей день. Нас окружали другие ученые и молодые студенты, которые с любопытством слушали и были весьма удивлены. Я говорила очень увлеченно, подчеркивала значение гигантских вирусов, многие из которых по размеру больше бактерий, так как они могут выполнять почти те же функции, что и живые клетки, — не так много, но близко к тому! Они могут быть носителями других вирусов. Они даже почти «видят»! Вирусы крупнее многих бактерий и вирусы в качестве хозяев вирусов, до недавнего времени об этом никто не слышал. Не существует четкого разделения между вирусами и клетками. Так что же мы обсуждаем: вирусы или клетки? Студенты были удивлены, они никогда ранее об этом не слышали. На нашей планете существует 1033 вирусов, это самый успешный биологический вид на Земле и самая крупная биологическая популяция на планете. Нет ни одного живого существа без вирусов. Действительно ли все организмы содержат вирусы? Есть ли они даже в нашем геноме? Готова поспорить, что да! Поэтому вирусы, должно быть, существуют с момента возникновения жизни на Земле, и ни один другой возбудитель инфекционных заболеваний не смог этого добиться. Убедили ли слушателей или Тома Чеха мои «возбужденные рассуждения»? Первыми были вирусы? Не знаю, согласились ли они со мной в итоге. Есть и дополнительные доводы в пользу того, что «первыми появились вирусы». Проведенный анализ последовательности свидетельствует о следующем: несмотря на сходство некоторых вирусных генов с клеточными, вирусных генов больше, чем клеточных. Одним из ведущих исследователей роли вирусов в эволюции жизни на Земле был Луис Вильярреаль из Центра по изучению вирусов в Ирвайне (Калифорния). Он называет такое доминирование вирусов на нашей планете «виросферой» и использует понятие «репликатор» применительно к прото-РНК, первой реплицирующейся РНК-содержащей биомолекуле. Последующее сопоставление последовательностей, которое провел специалист по биоинформатике Евгений Кунин, подтвердило эту концепцию. Сначала возник мир вирусов, точнее — РНК-содержащих вирусов, после чего появились ретроэлементы, а потом ДНК-содержащие вирусы. Ученые, открывшие гигантские вирусы, поместили их у основания древа жизни, но эти вирусы слишком велики для первых форм жизни на Земле, и не все допускают рассмотрение этого вопроса! И даже Феликс д’Эррель, ученый, открывший фаги, интуитивно отвел им место у корней «древа жизни». Такую эволюцию можно охарактеризовать как «восходящее развитие» — от простого к сложному, от мелких к крупным или как «гипотезу о том, что сначала появились вирусы», согласно которой вирусы первыми заселили царство пребиотиков. Трудность заключается в том, чтобы признать, что первые вирусы могли обходиться без клеток, живя в нишах, «маленьком теплом пруду», по определению Дарвина, или в каких-то полостях с неорганическими компонентами, а возможно, и глиной в качестве катализатора. Им нужна была энергия, но тогда еще не было синтеза белка и клеток, поскольку для их образования требуется химическая энергия! Новые методы химического анализа свидетельствуют о том, что три основных строительных блока жизни — аминокислоты, нуклеотиды и липиды — можно синтезировать в первичном бульоне Дарвина при поступлении энергии из окружающей среды. Британский химик Джон Сазерленд может осуществлять однореакторный синтез всех трех строительных блоков жизни в одной пробирке, и при этом стартовым условием является наличие простых предшественников, в частности синильной кислоты, фосфора, сероводорода и воды, а также ультрафиолетового излучения. Вот так и могла начаться жизнь. Только после появления типичных клеток вирусы смогли изменить образ существования и превратиться во внутриклеточных паразитов — это хорошо известная тенденция в эволюционном развитии, определяемая средовыми условиями. Борясь за клеточные ресурсы, они сталкивались с конкурентами и создали ранние примитивные механизмы противовирусной защиты, клеточного иммунитета. Возможно даже, что вирусы принесли ядро в первые эукариотические клетки. Я внесла изменения в определение вируса, расширив его по сравнению с определением из классических учебников по вирусологии, в соответствии с которым вирусы относятся к паразитам и нуждаются в клетках. Вместо этого я отнесла к «вирусам», или хотя бы к вирусоподобным организмам, вироиды, поли-ДНК-вирусы, плазмидные ДНК и даже прионы как «вирусы» или по крайней мере вирусоподобные структуры. Предположу, что в этом случае... [стр. 212 ⇒]

Но нужно признать наличие некоторых исключений из этих «правил». В организме человека обитает много разных видов вирусов. Почему у растений РНК-содержащие вирусы, а у фагов ДНК-содержащие вирусы? Как возникают предпочтения у хозяина и у вируса? Мне никто не может этого объяснить, а в учебниках по вирусологии данный вопрос даже не рассматривается. Есть красочный постер, подготовленный Международным комитетом по таксономии вирусов (ICTV), показывающий таксономию вирусов. На нем изображен эллипс с сегментами для хозяев и их вирусов. Такие постеры висят на дверях почти во всех вирусологических институтах всего мира и служат хорошим украшением. Я позвонила производителю, чтобы узнать, чем они руководствовались, разрабатывая этот постер. «Вкус и пространство», — был ответ; вкус художника, чувство красоты, эстетические соображения и никакого научного обоснования. Возможно, вот оно, объяснение: если сначала на нашей планете появилась РНК, а потом ДНК, то ДНК-содержащих вирусов должно быть больше, чем РНК-содержащих. Возможно, ДНК-содержащие вирусы изначально были РНК-содержащими, а затем стали ДНК-содержащими, покинув мир РНК-содержащих микроорганизмов. РНК-содержащие вирусы — «тихоходы», а ДНК-содержащие — «скороходы». Подтверждается ли это? Возможно, да: об этом говорит скорость репликации, время удвоения у ДНК-содержащих вирусов и их хозяев. У бактерий и их ДНК-содержащих фагов время репликации составляет от 20 минут до нескольких часов в зависимости от нутриентов и условий роста. У растений же, наоборот, время удвоения может составлять до 3500 лет (как у секвойи, растущей на территории США) или еще дольше (например, у гинкго билоба и норвежской ели, возраст которой достигает 9500 лет). Вирусы растений представлены главным образом РНК-содержащими вирусами. Они сохраняются в деревьях, медленно реплицируются, не покидая хозяина. Время удвоения у хозяина, число поколений бактерий по сравнению с растениями может быть в несколько миллионов раз выше. Рост бактерий и их вирусов имеет цифровое выражение: на нашей планете 1030 бактерий и 1033 фагов, и у большинства из них ДНК-геномы. В биологическом мире нет более успешных организмов, чем ДНК-содержащие вирусы и их бактерии, которые обитают в почве, океане, нашем кишечнике, экосистемах организма человека и всех экосистемах в принципе. Они есть даже в наших генах! Гигантские вирусы, инфицирующие морские водоросли, также подходят для этой модели, основанной на циклах репликации. Водоросли относятся к растениям, поэтому следовало бы, чтобы они были представлены главным образом РНК-вирусами, но многие водоросли представляют собой одноклеточные быстрорастущие организмы, достигающие большой численности. Поэтому ожидается, что победителями в конце концов окажутся все ДНК-содержащие вирусы в силу скорости их размножения. Одноклеточный планктон (нанопланктон) способен к быстрому делению и, соответственно, является пристанищем для вирусов, содержащих двухцепочечную ДНК. Таким образом, общей чертой, объясняющей доминирование РНК- и ДНК-содержащих вирусов в различных видах живых организмов, похоже, является скорость репликации и число делений. РНК была первой, и чем больше поколений проходит, тем выше ее шанс стать ДНК — прогресс в эволюции! Мы, млекопитающие, находимся где-то между этими двумя крайними позициями. У нас есть как РНК-, так и ДНК-содержащие вирусы. Это моя гипотеза. Есть еще одно предположение, объясняющее, почему в растениях развивались не ДНК-содержащие, а главным образом РНК-содержащие вирусы. Они не могут легко перемещаться из клетки в клетку, поскольку ДНК слишком велика и имеет жесткую структуру. Имеющаяся у растений система доставки не позволила бы осуществить такой перенос (через небольшие соединения, плазмодесмы). Такую гипотезу сформулировал Евгений Кунин — я не проверяла. Однако, может быть, имела место некоторая адаптация и вирусы стали мельче или сосуды расширились? Тогда эта адаптация сработала. Можно найти дополнительные свидетельства в пользу того, что не только вирусы растений, но и сами растения, похоже, развиваются медленно. У них до сих пор активны ДНК-транспозоны, перемещающиеся по способу «вырезать и вставить», которые существуют главным образом в растениях и уже не отмечаются в более высокоорганизованных организмах. У растений, в частности у кукурузы и риса, 85–90% генов представлено активными «прыгающими»... [стр. 216 ⇒]

Археи — одна из трех основ жизни на Земле, помимо бактерий и эукариотов. Ранее они назывались архебактериями, но в настоящее это определение не используется. Археи (мн. ч.), возможно, самые древние клетки, находящиеся в основании древа жизни. Бактериофаг — то же самое, что фаг, вирус бактерии. БАС — боковой амиотрофический склероз — наследственное заболевание, вызывающее прогрессирующий паралич. Белок — основной компонент живых существ, состоящий из аминокислот. Белки формируют мышцы, кожу, органы организма и т.д. — например, стейк или яйца на сковороде состоят в основном из аминокислот, коротких белков, называемых пептидами; белки с каталитической активностью являются ферментами; лишь 2% генома человека кодируют белки. Бисульфитная конверсия — метод детекции метилированных нуклеотидов в ДНК, что является важным маркером эпигенетической регуляции, служит для различения метил-модифицированных и немодифицированных цитозинов (С); при использовании в терапевтических целях превращает С в тимин (Т), в то время как на метил-модифированные С обработка бисульфитом не оказывает действия. Вироид — малый рибозим, РНК со стабильной замкнутой шпилько-петлеобразной структурой; в настоящее время имеет 350 оснований; часто проявляет каталитическую активность; является первой биомолекулой на нашей планете; образовался 3,9 млрд лет назад; в настоящее время наблюдается в основном в растениях, что неблагоприятно сказывается на урожайности; вирус гепатита дельта — единственный рибозим в организме человека. «Голый» вирусоподобный элемент; не кодирует белок, но взаимодействует с другими нуклеиновыми кислотами; относится к регуляторным недавно открытым circРНК, которые присутствуют во всех клетках человека, выполняя функции основного регулятора, осуществляющего титрование siРНК-молекул. В данной книге вироиды характеризуются как самые ранние биомолекулы, имеющие свойства вирусов, в силу чего возникло предположение, что вирусы — наши самые древние предки, у которых не было белковой оболочки. Виром — все вирусы, присутствующие в образце или экосистеме, когда не выделяются отдельные вирусы. Виросфера — мир вирусов, изображенный на постере и классифицированный Международным комитетом по таксономии вирусов. Вирофаг — вирус, инфицирующий другой вирус, по аналогии с бактериофагом (вирусом бактерий); присутствует в гигантских вирусах, доставляет вирусы к хозяину; похож на клеточные организмы; вирофаги носят следующие названия — Sputnik или вирус Ma у гигантских вирусов; это мелкие частицы, их геномы с двухцепочечной ДНК содержат около 20 000 пар оснований; вирофаг способен уничтожить своего хозяина — гигантский вирус. Вирус — подвижный элемент; часто состоит из генов, может содержать или не содержать белок; «вирусы, состоящие только из белка» называются прионами (как правило, их не относят к вирусам, хотя это можно было бы сделать); вирусы осуществляют перенос генетической или структурной информации; участвуют в горизонтальном и вертикальном переносе, для чего задействуют соматические и/или зародышевые клетки; используют большое количество не связанных между собой механизмов репликации; характеризуются самым большим генетическим разнообразием на планете; часто выраженное видовое разнообразие вирусов обусловлено тем, что механизмы репликации подвержены ошибкам, что приводит к образованию квазивидов, когда одновременно сосуществует большое число мутантов. ДНК-содержащие вирусы генетически более стабильны по сравнению с РНК-содержащими вирусами; у вирусов нет рибосом, исключение составляют некоторые гигантские вирусы; вирусы зависят от снабжения энергией клетками. Возможно, такой паразитический образ существования — более позднее эволюционное событие. Молекулы РНК-содержащих вирусов, в частности рибозимы, вироиды — самые древние биомолекулы, не кодирующие белок (до сих пор); вирусы способны реплицироваться без помощи клеток, но для этого им необходима энергия. В настоящее время вирусам нужны клетки для синтеза белка. Вирусы являются двигателем эволюции; они создали наш геном, в частности сформировали нашу противовирусную защиту (иммунную систему). Геном человека примерно на 50% (а ранее в эволюции, возможно, и гораздо больше) состоит из структур, относящихся к ретровирусным элементам. Возможно, они появились в самом начале формирования жизни на Земле и эволюции. Кроме того, прионы, состоящие только из белков, и... [стр. 235 ⇒]

Часть 1. Биологические вирусы. Подавляющее большинство ныне живущих на Земле организмов состоит из клеток, и лишь вирусы не имеют клеточного строения. По этому важнейшему признаку все живое в настоящее время делится учеными на две сферы: - доклеточные (вирусы и фаги), - клеточные (все остальные организмы: бактерии и близкие к ним группы, грибы, зеленые растения, животные и человек). Вирусы - мельчайшие организмы, их размеры колеблются от 12 до 500 нанометров. Вирусы нельзя увидеть в оптический микроскоп, так как их размеры меньше длины световой волны. Разглядеть их можно лишь с помощью электронного микроскопа. Мелкие вирусы равны крупным молекулам белка. Важнейшими отличительными особенностями вирусов являются следующие: 1. Они содержат в своем составе только один из типов нуклеиновых кислот: либо рибонуклеиновую кислоту (РНК), либо дезоксирибонуклеиновую (ДНК), — а все клеточные организмы, в том числе и самые примитивные бактерии, содержат и ДНК, и РНК одновременно. 2. Не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения используют обмен веществ клетки-хозяина, ее ферменты и энергию. Вирусы, по словам Сатпрема, "используют разум клеток". 3. Могут существовать только как внутриклеточные паразиты и не размножаются вне клеток тех организмов, в которых паразитируют. Наиболее примитивные вирусы состоят из молекулы РНК (либо ДНК), окруженной снаружи белковыми молекулами, создающими оболочку вируса. Некоторые вирусы имеют еще одну — внешнюю, или вторичную, оболочку; более сложные вирусы содержат ряд ферментов. Нуклеиновая кислота является носительницей наследственных свойств вируса. Белки внутренней и внешней оболочек служат для ее защиты. Так как вирусы не обладают собственным обменом веществ, вне клетки они существуют в виде "неживых" частиц. В этом случае можно сказать, что вирусы представляют собой инертные кристаллы. При попадании в клетку они вновь "оживают". При размножении для создания компонентов своих частиц вирусы используют питательные вещества, информационную среду и энергетико-метаболические системы инфицированных ими клеток. После проникновения в клетку вирус распадается на составляющие его части - нуклеиновая кислота и белки оболочки. С этого момента биосинтетическими процессами клетки-хозяина начинает управлять генетическая информация, закодированная в нуклеиновой кислоте вируса. В клетке-хозяине осуществляется раздельный синтез оболочки и нуклеиновой кислоты вируса. В дальнейшем они объединяются и образуют новый вирион (полностью сформированный зрелый вирус). Вирусы не размножаются на искусственных питательных средах — они чересчур разборчивы в пище. Им нужны живые клетки, и не любые, а строго определенные. Науке известны вирусы бактерий, растений, насекомых, животных и человека. Всего их открыто более тысячи. Связанные с размножением вируса процессы чаще всего, но не всегда, повреждают и уничтожают клетку-хозяина. Размножение вирусов, сопряженное с разрушением клеток, ведет к возникновению болезненных состояний в организме. [стр. 4 ⇒]

Вирусы вызывают многие заболевания человека: корь, свинку, грипп, полиомиелит, бешенство, оспу, желтую лихорадку, трахому, энцефалит, некоторые онкологические болезни, СПИД, герпес. В настоящее время ученые все чаще предполагают, что вирусы являются причиной нервных расстройств и психических заболеваний. Например, профессор Норберт Новотни из венского университета располагает доказательствами того, что вирус Борна, вызывающий смертельные болезни мозга у животных, но не представляющий, как предполагалось до этого времени, опасности для человека, способен все же поражать человеческий мозг, вызывая шизофрению, депрессию и хроническую усталость. Известно, что у лошадей и овец вирус Борна вызывает тяжелые случаи воспаления мозга. В результате заболевания животные перестают есть, теряют интерес к окружающей среде и в большинстве случаев умирают от паралича в течение 3 недель. В настоящее время какого-либо эффективного способа лечения заболевших животных не существует. Последние данные позволяют предположить, что в человеческом организме вирус все-таки способен вызывать определенные изменения, в частности, изменения в передаче нервных сигналов, неминуемо приводящих к психическим расстройствам. Показано, что у людей, страдающих нервными расстройствами, обнаруживается высокий уровень антител к вирусу. Кроме того, вирус выделяется и у многих людей, страдающих синдромом хронической усталости. Ученые установили, что в организме человека живет много вирусов, но проявляют они себя не всегда. Воздействиям болезнетворного вируса подвержен лишь ослабленный организм. Пути заражения вирусами самые различные: через кожу при укусах насекомых и клещей; через слюну, слизь и другие выделения больного; через воздух; с пищей; половым путем и другие. Известен целый ряд вирусов, которые не являются носителями болезней. Многие из них проникают в организм человека, но при этом не вызывают никаких клинически обнаруживаемых заболеваний. Они могут продолжительно и без всяких внешних проявлений существовать в клетках своего хозяина. Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным. Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем. Вирусы сознания. Итак, существует тысячи видов вирусов, однако в этой книге мы рассмотрим действие вирусов, паразитирующих на человеческом сознании. Характеризуя наиболее широкие группы вирусов, можно утверждать, что вирус — это биопрограмма. Более того, это деструктивная программа, обладающая высокой способностью к самовоспроизведению. Копии вируса могут не совпадать с оригиналом, видоизменяясь в зависимости от условий распространения. Паразиты сознания реструктурируют человеческий мозг, чтобы сделать его наилучшей питательной средой для своего обитания. Строго говоря, вирусы сознания даже не размножаются в привычном смысле этого слова: они воспроизводятся, путешествуя по планам... [стр. 5 ⇒]

Смотреть страницы где упоминается термин "вирус": [1] [3] [318] [348] [98] [19] [20] [28] [30] [3] [22] [25] [26] [28] [9] [12] [2] [3] [19] [4] [18] [20] [487] [31] [85] [2] [21] [295] [13] [14] [44] [45] [20] [27] [28] [13] [223] [226] [15] [2] [2] [5] [23] [399] [399] [1] [1] [1] [1] [1]